.reserved_cb_names <- c("names", "class", "call", "params", "niter", "nfeatures", "folds") #' XGBoost Callback Constructor #' #' Constructor for defining the structure of callback functions that can be executed #' at different stages of model training (before / after training, before / after each boosting #' iteration). #' #' @details #' Arguments that will be passed to the supplied functions are as follows: #' - env The same environment that is passed under argument `env`. #' #' It may be modified by the functions in order to e.g. keep tracking of what happens #' across iterations or similar. #' #' This environment is only used by the functions supplied to the callback, and will #' not be kept after the model fitting function terminates (see parameter `f_after_training`). #' #' - model The booster object when using [xgb.train()], or the folds when using [xgb.cv()]. #' #' For [xgb.cv()], folds are a list with a structure as follows: #' - `dtrain`: The training data for the fold (as an `xgb.DMatrix` object). #' - `bst`: Rhe `xgb.Booster` object for the fold. #' - `evals`: A list containing two DMatrices, with names `train` and `test` #' (`test` is the held-out data for the fold). #' - `index`: The indices of the hold-out data for that fold (base-1 indexing), #' from which the `test` entry in `evals` was obtained. #' #' This object should **not** be in-place modified in ways that conflict with the #' training (e.g. resetting the parameters for a training update in a way that resets #' the number of rounds to zero in order to overwrite rounds). #' #' Note that any R attributes that are assigned to the booster during the callback functions, #' will not be kept thereafter as the booster object variable is not re-assigned during #' training. It is however possible to set C-level attributes of the booster through #' [xgb.attr()] or [xgb.attributes()], which should remain available for the rest #' of the iterations and after the training is done. #' #' For keeping variables across iterations, it's recommended to use `env` instead. #' - data The data to which the model is being fit, as an `xgb.DMatrix` object. #' #' Note that, for [xgb.cv()], this will be the full data, while data for the specific #' folds can be found in the `model` object. #' - evals The evaluation data, as passed under argument `evals` to [xgb.train()]. #' #' For [xgb.cv()], this will always be `NULL`. #' - begin_iteration Index of the first boosting iteration that will be executed (base-1 indexing). #' #' This will typically be '1', but when using training continuation, depending on the #' parameters for updates, boosting rounds will be continued from where the previous #' model ended, in which case this will be larger than 1. #' #' - end_iteration Index of the last boostign iteration that will be executed #' (base-1 indexing, inclusive of this end). #' #' It should match with argument `nrounds` passed to [xgb.train()] or [xgb.cv()]. #' #' Note that boosting might be interrupted before reaching this last iteration, for #' example by using the early stopping callback \link{xgb.cb.early.stop}. #' - iteration Index of the iteration number that is being executed (first iteration #' will be the same as parameter `begin_iteration`, then next one will add +1, and so on). #' #' - iter_feval Evaluation metrics for `evals` that were supplied, either #' determined by the objective, or by parameter `feval`. #' #' For [xgb.train()], this will be a named vector with one entry per element in #' `evals`, where the names are determined as 'evals name' + '-' + 'metric name' - for #' example, if `evals` contains an entry named "tr" and the metric is "rmse", #' this will be a one-element vector with name "tr-rmse". #' #' For [xgb.cv()], this will be a 2d matrix with dimensions `[length(evals), nfolds]`, #' where the row names will follow the same naming logic as the one-dimensional vector #' that is passed in [xgb.train()]. #' #' Note that, internally, the built-in callbacks such as [xgb.cb.print.evaluation] summarize #' this table by calculating the row-wise means and standard deviations. #' #' - final_feval The evaluation results after the last boosting round is executed #' (same format as `iter_feval`, and will be the exact same input as passed under #' `iter_feval` to the last round that is executed during model fitting). #' #' - prev_cb_res Result from a previous run of a callback sharing the same name #' (as given by parameter `cb_name`) when conducting training continuation, if there #' was any in the booster R attributes. #' #' Sometimes, one might want to append the new results to the previous one, and this will #' be done automatically by the built-in callbacks such as [xgb.cb.evaluation.log], #' which will append the new rows to the previous table. #' #' If no such previous callback result is available (which it never will when fitting #' a model from start instead of updating an existing model), this will be `NULL`. #' #' For [xgb.cv()], which doesn't support training continuation, this will always be `NULL`. #' #' The following names (`cb_name` values) are reserved for internal callbacks: #' - print_evaluation #' - evaluation_log #' - reset_parameters #' - early_stop #' - save_model #' - cv_predict #' - gblinear_history #' #' The following names are reserved for other non-callback attributes: #' - names #' - class #' - call #' - params #' - niter #' - nfeatures #' - folds #' #' When using the built-in early stopping callback ([xgb.cb.early.stop]), said callback #' will always be executed before the others, as it sets some booster C-level attributes #' that other callbacks might also use. Otherwise, the order of execution will match with #' the order in which the callbacks are passed to the model fitting function. #' #' @param cb_name Name for the callback. #' #' If the callback produces some non-NULL result (from executing the function passed under #' `f_after_training`), that result will be added as an R attribute to the resulting booster #' (or as a named element in the result of CV), with the attribute name specified here. #' #' Names of callbacks must be unique - i.e. there cannot be two callbacks with the same name. #' @param env An environment object that will be passed to the different functions in the callback. #' Note that this environment will not be shared with other callbacks. #' @param f_before_training A function that will be executed before the training has started. #' #' If passing `NULL` for this or for the other function inputs, then no function will be executed. #' #' If passing a function, it will be called with parameters supplied as non-named arguments #' matching the function signatures that are shown in the default value for each function argument. #' @param f_before_iter A function that will be executed before each boosting round. #' #' This function can signal whether the training should be finalized or not, by outputting #' a value that evaluates to `TRUE` - i.e. if the output from the function provided here at #' a given round is `TRUE`, then training will be stopped before the current iteration happens. #' #' Return values of `NULL` will be interpreted as `FALSE`. #' @param f_after_iter A function that will be executed after each boosting round. #' #' This function can signal whether the training should be finalized or not, by outputting #' a value that evaluates to `TRUE` - i.e. if the output from the function provided here at #' a given round is `TRUE`, then training will be stopped at that round. #' #' Return values of `NULL` will be interpreted as `FALSE`. #' @param f_after_training A function that will be executed after training is finished. #' #' This function can optionally output something non-NULL, which will become part of the R #' attributes of the booster (assuming one passes `keep_extra_attributes=TRUE` to [xgb.train()]) #' under the name supplied for parameter `cb_name` imn the case of [xgb.train()]; or a part #' of the named elements in the result of [xgb.cv()]. #' @return An `xgb.Callback` object, which can be passed to [xgb.train()] or [xgb.cv()]. #' #' @seealso Built-in callbacks: #' - [xgb.cb.print.evaluation] #' - [xgb.cb.evaluation.log] #' - [xgb.cb.reset.parameters] #' - [xgb.cb.early.stop] #' - [xgb.cb.save.model] #' - [xgb.cb.cv.predict] #' - [xgb.cb.gblinear.history] # #' @examples #' # Example constructing a custom callback that calculates #' # squared error on the training data (no separate test set), #' # and outputs the per-iteration results. #' ssq_callback <- xgb.Callback( #' cb_name = "ssq", #' f_before_training = function(env, model, data, evals, #' begin_iteration, end_iteration) { #' # A vector to keep track of a number at each iteration #' env$logs <- rep(NA_real_, end_iteration - begin_iteration + 1) #' }, #' f_after_iter = function(env, model, data, evals, iteration, iter_feval) { #' # This calculates the sum of squared errors on the training data. #' # Note that this can be better done by passing an 'evals' entry, #' # but this demonstrates a way in which callbacks can be structured. #' pred <- predict(model, data) #' err <- pred - getinfo(data, "label") #' sq_err <- sum(err^2) #' env$logs[iteration] <- sq_err #' cat( #' sprintf( #' "Squared error at iteration %d: %.2f\n", #' iteration, sq_err #' ) #' ) #' #' # A return value of 'TRUE' here would signal to finalize the training #' return(FALSE) #' }, #' f_after_training = function(env, model, data, evals, iteration, #' final_feval, prev_cb_res) { #' return(env$logs) #' } #' ) #' #' data(mtcars) #' #' y <- mtcars$mpg #' x <- as.matrix(mtcars[, -1]) #' #' dm <- xgb.DMatrix(x, label = y, nthread = 1) #' model <- xgb.train( #' data = dm, #' params = list(objective = "reg:squarederror", nthread = 1), #' nrounds = 5, #' callbacks = list(ssq_callback), #' keep_extra_attributes = TRUE #' ) #' #' # Result from 'f_after_iter' will be available as an attribute #' attributes(model)$ssq #' @export xgb.Callback <- function( cb_name = "custom_callback", env = new.env(), f_before_training = function(env, model, data, evals, begin_iteration, end_iteration) NULL, f_before_iter = function(env, model, data, evals, iteration) NULL, f_after_iter = function(env, model, data, evals, iteration, iter_feval) NULL, f_after_training = function(env, model, data, evals, iteration, final_feval, prev_cb_res) NULL ) { stopifnot(is.null(f_before_training) || is.function(f_before_training)) stopifnot(is.null(f_before_iter) || is.function(f_before_iter)) stopifnot(is.null(f_after_iter) || is.function(f_after_iter)) stopifnot(is.null(f_after_training) || is.function(f_after_training)) stopifnot(is.character(cb_name) && length(cb_name) == 1) if (cb_name %in% .reserved_cb_names) { stop("Cannot use reserved callback name '", cb_name, "'.") } out <- list( cb_name = cb_name, env = env, f_before_training = f_before_training, f_before_iter = f_before_iter, f_after_iter = f_after_iter, f_after_training = f_after_training ) class(out) <- "xgb.Callback" return(out) } .execute.cb.before.training <- function( callbacks, model, data, evals, begin_iteration, end_iteration ) { for (callback in callbacks) { if (!is.null(callback$f_before_training)) { callback$f_before_training( callback$env, model, data, evals, begin_iteration, end_iteration ) } } } .execute.cb.before.iter <- function( callbacks, model, data, evals, iteration ) { if (!length(callbacks)) { return(FALSE) } out <- sapply(callbacks, function(cb) { if (is.null(cb$f_before_iter)) { return(FALSE) } should_stop <- cb$f_before_iter( cb$env, model, data, evals, iteration ) if (!NROW(should_stop)) { should_stop <- FALSE } else if (NROW(should_stop) > 1) { should_stop <- head(as.logical(should_stop), 1) } return(should_stop) }) return(any(out)) } .execute.cb.after.iter <- function( callbacks, model, data, evals, iteration, iter_feval ) { if (!length(callbacks)) { return(FALSE) } out <- sapply(callbacks, function(cb) { if (is.null(cb$f_after_iter)) { return(FALSE) } should_stop <- cb$f_after_iter( cb$env, model, data, evals, iteration, iter_feval ) if (!NROW(should_stop)) { should_stop <- FALSE } else if (NROW(should_stop) > 1) { should_stop <- head(as.logical(should_stop), 1) } return(should_stop) }) return(any(out)) } .execute.cb.after.training <- function( callbacks, model, data, evals, iteration, final_feval, prev_cb_res ) { if (!length(callbacks)) { return(NULL) } old_cb_res <- attributes(model) out <- lapply(callbacks, function(cb) { if (is.null(cb$f_after_training)) { return(NULL) } else { return( cb$f_after_training( cb$env, model, data, evals, iteration, final_feval, getElement(old_cb_res, cb$cb_name) ) ) } }) names(out) <- sapply(callbacks, function(cb) cb$cb_name) if (NROW(out)) { out <- out[!sapply(out, is.null)] } return(out) } .summarize.feval <- function(iter_feval, showsd) { if (NCOL(iter_feval) > 1L && showsd) { stdev <- apply(iter_feval, 1, sd) } else { stdev <- NULL } if (NCOL(iter_feval) > 1L) { iter_feval <- rowMeans(iter_feval) } return(list(feval = iter_feval, stdev = stdev)) } .print.evaluation <- function(iter_feval, showsd, iteration) { tmp <- .summarize.feval(iter_feval, showsd) msg <- .format_eval_string(iteration, tmp$feval, tmp$stdev) cat(msg, '\n') } # Format the evaluation metric string .format_eval_string <- function(iter, eval_res, eval_err = NULL) { if (length(eval_res) == 0) stop('no evaluation results') enames <- names(eval_res) if (is.null(enames)) stop('evaluation results must have names') iter <- sprintf('[%d]\t', iter) if (!is.null(eval_err)) { if (length(eval_res) != length(eval_err)) stop('eval_res & eval_err lengths mismatch') # Note: UTF-8 code for plus/minus sign is U+00B1 res <- paste0(sprintf("%s:%f\U00B1%f", enames, eval_res, eval_err), collapse = '\t') } else { res <- paste0(sprintf("%s:%f", enames, eval_res), collapse = '\t') } return(paste0(iter, res)) } #' Callback for printing the result of evaluation #' #' @description #' The callback function prints the result of evaluation at every `period` iterations. #' The initial and the last iteration's evaluations are always printed. #' #' Does not leave any attribute in the booster (see [xgb.cb.evaluation.log] for that). #' #' @param period Results would be printed every number of periods. #' @param showsd Whether standard deviations should be printed (when available). #' @return An `xgb.Callback` object, which can be passed to [xgb.train()] or [xgb.cv()]. #' @seealso [xgb.Callback] #' @export xgb.cb.print.evaluation <- function(period = 1, showsd = TRUE) { if (length(period) != 1 || period != floor(period) || period < 1) { stop("'period' must be a positive integer.") } xgb.Callback( cb_name = "print_evaluation", env = as.environment(list(period = period, showsd = showsd, is_first_call = TRUE)), f_before_training = NULL, f_before_iter = NULL, f_after_iter = function(env, model, data, evals, iteration, iter_feval) { if (is.null(iter_feval)) { return(FALSE) } if (env$is_first_call || (iteration - 1) %% env$period == 0) { .print.evaluation(iter_feval, env$showsd, iteration) env$last_printed_iter <- iteration } env$is_first_call <- FALSE return(FALSE) }, f_after_training = function(env, model, data, evals, iteration, final_feval, prev_cb_res) { if (is.null(final_feval)) { return(NULL) } if (is.null(env$last_printed_iter) || iteration > env$last_printed_iter) { .print.evaluation(final_feval, env$showsd, iteration) } } ) } #' Callback for logging the evaluation history #' #' @details This callback creates a table with per-iteration evaluation metrics (see parameters #' `evals` and `feval` in [xgb.train()]). #' #' Note: in the column names of the final data.table, the dash '-' character is replaced with #' the underscore '_' in order to make the column names more like regular R identifiers. #' #' @return An `xgb.Callback` object, which can be passed to [xgb.train()] or [xgb.cv()]. #' @seealso [xgb.cb.print.evaluation] #' @export xgb.cb.evaluation.log <- function() { xgb.Callback( cb_name = "evaluation_log", f_before_training = function(env, model, data, evals, begin_iteration, end_iteration) { env$evaluation_log <- vector("list", end_iteration - begin_iteration + 1) env$next_log <- 1 }, f_before_iter = NULL, f_after_iter = function(env, model, data, evals, iteration, iter_feval) { tmp <- .summarize.feval(iter_feval, TRUE) env$evaluation_log[[env$next_log]] <- list(iter = iteration, metrics = tmp$feval, sds = tmp$stdev) env$next_log <- env$next_log + 1 return(FALSE) }, f_after_training = function(env, model, data, evals, iteration, final_feval, prev_cb_res) { if (!NROW(env$evaluation_log)) { return(prev_cb_res) } # in case of early stopping if (env$next_log <= length(env$evaluation_log)) { env$evaluation_log <- head(env$evaluation_log, env$next_log - 1) } iters <- data.frame(iter = sapply(env$evaluation_log, function(x) x$iter)) metrics <- do.call(rbind, lapply(env$evaluation_log, function(x) x$metrics)) mnames <- gsub("-", "_", names(env$evaluation_log[[1]]$metrics), fixed = TRUE) colnames(metrics) <- mnames has_sds <- !is.null(env$evaluation_log[[1]]$sds) if (has_sds) { sds <- do.call(rbind, lapply(env$evaluation_log, function(x) x$sds)) colnames(sds) <- mnames metrics <- lapply( mnames, function(metric) { out <- cbind(metrics[, metric], sds[, metric]) colnames(out) <- paste0(metric, c("_mean", "_std")) return(out) } ) metrics <- do.call(cbind, metrics) } evaluation_log <- cbind(iters, metrics) if (!is.null(prev_cb_res)) { if (!is.data.table(prev_cb_res)) { prev_cb_res <- data.table::as.data.table(prev_cb_res) } prev_take <- prev_cb_res[prev_cb_res$iter < min(evaluation_log$iter)] if (nrow(prev_take)) { evaluation_log <- rbind(prev_cb_res, evaluation_log) } } evaluation_log <- data.table::as.data.table(evaluation_log) return(evaluation_log) } ) } #' Callback for resetting booster parameters at each iteration #' #' @details #' Note that when training is resumed from some previous model, and a function is used to #' reset a parameter value, the `nrounds` argument in this function would be the #' the number of boosting rounds in the current training. #' #' Does not leave any attribute in the booster. #' #' @param new_params List of parameters needed to be reset. #' Each element's value must be either a vector of values of length `nrounds` #' to be set at each iteration, #' or a function of two parameters `learning_rates(iteration, nrounds)` #' which returns a new parameter value by using the current iteration number #' and the total number of boosting rounds. #' @return An `xgb.Callback` object, which can be passed to [xgb.train()] or [xgb.cv()]. #' @export xgb.cb.reset.parameters <- function(new_params) { stopifnot(is.list(new_params)) pnames <- gsub(".", "_", names(new_params), fixed = TRUE) not_allowed <- pnames %in% c('num_class', 'num_output_group', 'size_leaf_vector', 'updater_seq') if (any(not_allowed)) stop('Parameters ', paste(pnames[not_allowed]), " cannot be changed during boosting.") xgb.Callback( cb_name = "reset_parameters", env = as.environment(list(new_params = new_params)), f_before_training = function(env, model, data, evals, begin_iteration, end_iteration) { env$end_iteration <- end_iteration pnames <- gsub(".", "_", names(env$new_params), fixed = TRUE) for (n in pnames) { p <- env$new_params[[n]] if (is.function(p)) { if (length(formals(p)) != 2) stop("Parameter '", n, "' is a function but not of two arguments") } else if (is.numeric(p) || is.character(p)) { if (length(p) != env$end_iteration) stop("Length of '", n, "' has to be equal to 'nrounds'") } else { stop("Parameter '", n, "' is not a function or a vector") } } }, f_before_iter = function(env, model, data, evals, iteration) { pars <- lapply(env$new_params, function(p) { if (is.function(p)) { return(p(iteration, env$end_iteration)) } else { return(p[iteration]) } }) if (inherits(model, "xgb.Booster")) { xgb.parameters(model) <- pars } else { for (fd in model) { xgb.parameters(fd$bst) <- pars } } return(FALSE) }, f_after_iter = NULL, f_after_training = NULL ) } #' Callback to activate early stopping #' #' @description #' This callback function determines the condition for early stopping. #' #' The following attributes are assigned to the booster's object: #' - `best_score` the evaluation score at the best iteration #' - `best_iteration` at which boosting iteration the best score has occurred #' (0-based index for interoperability of binary models) #' #' The same values are also stored as R attributes as a result of the callback, plus an additional #' attribute `stopped_by_max_rounds` which indicates whether an early stopping by the `stopping_rounds` #' condition occurred. Note that the `best_iteration` that is stored under R attributes will follow #' base-1 indexing, so it will be larger by '1' than the C-level 'best_iteration' that is accessed #' through [xgb.attr()] or [xgb.attributes()]. #' #' At least one dataset is required in `evals` for early stopping to work. #' #' @param stopping_rounds The number of rounds with no improvement in #' the evaluation metric in order to stop the training. #' @param maximize Whether to maximize the evaluation metric. #' @param metric_name The name of an evaluation column to use as a criteria for early #' stopping. If not set, the last column would be used. #' Let's say the test data in `evals` was labelled as `dtest`, #' and one wants to use the AUC in test data for early stopping regardless of where #' it is in the `evals`, then one of the following would need to be set: #' `metric_name = 'dtest-auc'` or `metric_name = 'dtest_auc'`. #' All dash '-' characters in metric names are considered equivalent to '_'. #' @param verbose Whether to print the early stopping information. #' @param keep_all_iter Whether to keep all of the boosting rounds that were produced #' in the resulting object. If passing `FALSE`, will only keep the boosting rounds #' up to the detected best iteration, discarding the ones that come after. #' @return An `xgb.Callback` object, which can be passed to [xgb.train()] or [xgb.cv()]. #' @export xgb.cb.early.stop <- function( stopping_rounds, maximize = FALSE, metric_name = NULL, verbose = TRUE, keep_all_iter = TRUE ) { if (!is.null(metric_name)) { stopifnot(is.character(metric_name)) stopifnot(length(metric_name) == 1L) } xgb.Callback( cb_name = "early_stop", env = as.environment( list( checked_evnames = FALSE, stopping_rounds = stopping_rounds, maximize = maximize, metric_name = metric_name, verbose = verbose, keep_all_iter = keep_all_iter, stopped_by_max_rounds = FALSE ) ), f_before_training = function(env, model, data, evals, begin_iteration, end_iteration) { if (inherits(model, "xgb.Booster") && !length(evals)) { stop("For early stopping, 'evals' must have at least one element") } env$begin_iteration <- begin_iteration return(NULL) }, f_before_iter = function(env, model, data, evals, iteration) NULL, f_after_iter = function(env, model, data, evals, iteration, iter_feval) { sds <- NULL if (NCOL(iter_feval) > 1) { tmp <- .summarize.feval(iter_feval, TRUE) iter_feval <- tmp$feval sds <- tmp$stdev } if (!env$checked_evnames) { eval_names <- gsub('-', '_', names(iter_feval), fixed = TRUE) if (!is.null(env$metric_name)) { env$metric_idx <- which(gsub('-', '_', env$metric_name, fixed = TRUE) == eval_names) if (length(env$metric_idx) == 0) stop("'metric_name' for early stopping is not one of the following:\n", paste(eval_names, collapse = ' '), '\n') } if (is.null(env$metric_name)) { if (NROW(iter_feval) == 1) { env$metric_idx <- 1L } else { env$metric_idx <- length(eval_names) if (env$verbose) cat('Multiple eval metrics are present. Will use ', eval_names[env$metric_idx], ' for early stopping.\n', sep = '') } } env$metric_name <- eval_names[env$metric_idx] # maximize is usually NULL when not set in xgb.train and built-in metrics if (is.null(env$maximize)) env$maximize <- grepl('(_auc|_aupr|_map|_ndcg|_pre)', env$metric_name) if (env$verbose) cat("Will train until ", env$metric_name, " hasn't improved in ", env$stopping_rounds, " rounds.\n\n", sep = '') env$best_iteration <- env$begin_iteration if (env$maximize) { env$best_score <- -Inf } else { env$best_score <- Inf } if (inherits(model, "xgb.Booster")) { best_score <- xgb.attr(model, 'best_score') if (NROW(best_score)) env$best_score <- as.numeric(best_score) best_iteration <- xgb.attr(model, 'best_iteration') if (NROW(best_iteration)) env$best_iteration <- as.numeric(best_iteration) + 1 } env$checked_evnames <- TRUE } score <- iter_feval[env$metric_idx] if ((env$maximize && score > env$best_score) || (!env$maximize && score < env$best_score)) { env$best_score <- score env$best_iteration <- iteration # save the property to attributes, so they will occur in checkpoint if (inherits(model, "xgb.Booster")) { xgb.attributes(model) <- list( best_iteration = env$best_iteration - 1, # convert to 0-based index best_score = env$best_score ) } } else if (iteration - env$best_iteration >= env$stopping_rounds) { if (env$verbose) { best_msg <- .format_eval_string(iteration, iter_feval, sds) cat("Stopping. Best iteration:\n", best_msg, "\n\n", sep = '') } env$stopped_by_max_rounds <- TRUE return(TRUE) } return(FALSE) }, f_after_training = function(env, model, data, evals, iteration, final_feval, prev_cb_res) { if (inherits(model, "xgb.Booster") && !env$keep_all_iter && env$best_iteration < iteration) { # Note: it loses the attributes after being sliced, # so they have to be re-assigned afterwards. prev_attr <- xgb.attributes(model) if (NROW(prev_attr)) { suppressWarnings({ prev_attr <- within(prev_attr, rm("best_score", "best_iteration")) }) } .Call(XGBoosterSliceAndReplace_R, xgb.get.handle(model), 0L, env$best_iteration, 1L) if (NROW(prev_attr)) { xgb.attributes(model) <- prev_attr } } attrs_set <- list(best_iteration = env$best_iteration - 1, best_score = env$best_score) if (inherits(model, "xgb.Booster")) { xgb.attributes(model) <- attrs_set } else { for (fd in model) { xgb.attributes(fd$bst) <- attrs_set # to use in the cv.predict callback } } return( list( best_iteration = env$best_iteration, best_score = env$best_score, stopped_by_max_rounds = env$stopped_by_max_rounds ) ) } ) } .save.model.w.formatted.name <- function(model, save_name, iteration) { # Note: this throws a warning if the name doesn't have anything to format through 'sprintf' suppressWarnings({ save_name <- sprintf(save_name, iteration) }) xgb.save(model, save_name) } #' Callback for saving a model file #' #' @description #' This callback function allows to save an xgb-model file, either periodically #' after each `save_period`'s or at the end. #' #' Does not leave any attribute in the booster. #' #' @param save_period Save the model to disk after every `save_period` iterations; #' 0 means save the model at the end. #' @param save_name The name or path for the saved model file. #' It can contain a [sprintf()] formatting specifier to include the integer #' iteration number in the file name. E.g., with `save_name = 'xgboost_%04d.model'`, #' the file saved at iteration 50 would be named "xgboost_0050.model". #' @return An `xgb.Callback` object, which can be passed to [xgb.train()], #' but **not** to [xgb.cv()]. #' @export xgb.cb.save.model <- function(save_period = 0, save_name = "xgboost.ubj") { if (save_period < 0) { stop("'save_period' cannot be negative") } if (!is.character(save_name) || length(save_name) != 1L) { stop("'save_name' must be a single character refering to file name.") } xgb.Callback( cb_name = "save_model", env = as.environment(list(save_period = save_period, save_name = save_name, last_save = 0)), f_before_training = function(env, model, data, evals, begin_iteration, end_iteration) { env$begin_iteration <- begin_iteration }, f_before_iter = NULL, f_after_iter = function(env, model, data, evals, iteration, iter_feval) { if (env$save_period > 0 && (iteration - env$begin_iteration) %% env$save_period == 0) { .save.model.w.formatted.name(model, env$save_name, iteration) env$last_save <- iteration } return(FALSE) }, f_after_training = function(env, model, data, evals, iteration, final_feval, prev_cb_res) { if (env$save_period == 0 && iteration > env$last_save) { .save.model.w.formatted.name(model, env$save_name, iteration) } } ) } #' Callback for returning cross-validation based predictions #' #' This callback function saves predictions for all of the test folds, #' and also allows to save the folds' models. #' #' @details #' Predictions are saved inside of the `pred` element, which is either a vector or a matrix, #' depending on the number of prediction outputs per data row. The order of predictions corresponds #' to the order of rows in the original dataset. Note that when a custom `folds` list is #' provided in [xgb.cv()], the predictions would only be returned properly when this list is a #' non-overlapping list of k sets of indices, as in a standard k-fold CV. The predictions would not be #' meaningful when user-provided folds have overlapping indices as in, e.g., random sampling splits. #' When some of the indices in the training dataset are not included into user-provided `folds`, #' their prediction value would be `NA`. #' #' @param save_models A flag for whether to save the folds' models. #' @param outputmargin Whether to save margin predictions (same effect as passing this #' parameter to [predict.xgb.Booster]). #' @return An `xgb.Callback` object, which can be passed to [xgb.cv()], #' but **not** to [xgb.train()]. #' @export xgb.cb.cv.predict <- function(save_models = FALSE, outputmargin = FALSE) { xgb.Callback( cb_name = "cv_predict", env = as.environment(list(save_models = save_models, outputmargin = outputmargin)), f_before_training = function(env, model, data, evals, begin_iteration, end_iteration) { if (inherits(model, "xgb.Booster")) { stop("'cv.predict' callback is only for 'xgb.cv'.") } }, f_before_iter = NULL, f_after_iter = NULL, f_after_training = function(env, model, data, evals, iteration, final_feval, prev_cb_res) { pred <- NULL for (fd in model) { pr <- predict( fd$bst, fd$evals[[2L]], outputmargin = env$outputmargin ) if (is.null(pred)) { if (NCOL(pr) > 1L) { pred <- matrix(NA_real_, nrow(data), ncol(pr)) } else { pred <- matrix(NA_real_, nrow(data)) } } if (is.matrix(pred)) { pred[fd$index, ] <- pr } else { pred[fd$index] <- pr } } out <- list(pred = pred) if (env$save_models) { out$models <- lapply(model, function(fd) fd$bst) } return(out) } ) } .list2mat <- function(coef_list, sparse) { if (sparse) { coef_mat <- methods::new("dgRMatrix") coef_mat@p <- as.integer(c(0, cumsum(sapply(coef_list, function(x) length(x@x))))) coef_mat@j <- as.integer(unlist(lapply(coef_list, slot, "i")) - 1L) coef_mat@x <- unlist(lapply(coef_list, slot, "x")) coef_mat@Dim <- as.integer(c(length(coef_list), length(coef_list[[1L]]))) # Note: function 'xgb.gblinear.history' might later on try to slice by columns coef_mat <- methods::as(coef_mat, "CsparseMatrix") return(coef_mat) } else { return(unname(do.call(rbind, coef_list))) } } .extract.coef <- function(model, sparse) { coefs <- .internal.coef.xgb.Booster(model, add_names = FALSE) if (NCOL(coefs) > 1L) { coefs <- as.vector(coefs) } if (sparse) { coefs <- methods::as(coefs, "sparseVector") } return(coefs) } #' Callback for collecting coefficients history of a gblinear booster #' #' @details #' To keep things fast and simple, gblinear booster does not internally store the history of linear #' model coefficients at each boosting iteration. This callback provides a workaround for storing #' the coefficients' path, by extracting them after each training iteration. #' #' This callback will construct a matrix where rows are boosting iterations and columns are #' feature coefficients (same order as when calling [coef.xgb.Booster], with the intercept #' corresponding to the first column). #' #' When there is more than one coefficient per feature (e.g. multi-class classification), #' the result will be reshaped into a vector where coefficients are arranged first by features and #' then by class (e.g. first 1 through N coefficients will be for the first class, then #' coefficients N+1 through 2N for the second class, and so on). #' #' If the result has only one coefficient per feature in the data, then the resulting matrix #' will have column names matching with the feature names, otherwise (when there's more than #' one coefficient per feature) the names will be composed as 'column name' + ':' + 'class index' #' (so e.g. column 'c1' for class '0' will be named 'c1:0'). #' #' With [xgb.train()], the output is either a dense or a sparse matrix. #' With with [xgb.cv()], it is a list (one element per each fold) of such matrices. #' #' Function [xgb.gblinear.history] provides an easy way to retrieve the #' outputs from this callback. #' #' @param sparse When set to `FALSE`/`TRUE`, a dense/sparse matrix is used to store the result. #' Sparse format is useful when one expects only a subset of coefficients to be non-zero, #' when using the "thrifty" feature selector with fairly small number of top features #' selected per iteration. #' @return An `xgb.Callback` object, which can be passed to [xgb.train()] or [xgb.cv()]. #' @seealso [xgb.gblinear.history], [coef.xgb.Booster]. #' @examples #' #### Binary classification: #' #' ## Keep the number of threads to 1 for examples #' nthread <- 1 #' data.table::setDTthreads(nthread) #' #' # In the iris dataset, it is hard to linearly separate Versicolor class from the rest #' # without considering the 2nd order interactions: #' x <- model.matrix(Species ~ .^2, iris)[, -1] #' colnames(x) #' dtrain <- xgb.DMatrix( #' scale(x), #' label = 1 * (iris$Species == "versicolor"), #' nthread = nthread #' ) #' param <- list( #' booster = "gblinear", #' objective = "reg:logistic", #' eval_metric = "auc", #' lambda = 0.0003, #' alpha = 0.0003, #' nthread = nthread #' ) #' #' # For 'shotgun', which is a default linear updater, using high eta values may result in #' # unstable behaviour in some datasets. With this simple dataset, however, the high learning #' # rate does not break the convergence, but allows us to illustrate the typical pattern of #' # "stochastic explosion" behaviour of this lock-free algorithm at early boosting iterations. #' bst <- xgb.train( #' param, #' dtrain, #' list(tr = dtrain), #' nrounds = 200, #' eta = 1., #' callbacks = list(xgb.cb.gblinear.history()) #' ) #' #' # Extract the coefficients' path and plot them vs boosting iteration number: #' coef_path <- xgb.gblinear.history(bst) #' matplot(coef_path, type = "l") #' #' # With the deterministic coordinate descent updater, it is safer to use higher learning rates. #' # Will try the classical componentwise boosting which selects a single best feature per round: #' bst <- xgb.train( #' param, #' dtrain, #' list(tr = dtrain), #' nrounds = 200, #' eta = 0.8, #' updater = "coord_descent", #' feature_selector = "thrifty", #' top_k = 1, #' callbacks = list(xgb.cb.gblinear.history()) #' ) #' matplot(xgb.gblinear.history(bst), type = "l") #' # Componentwise boosting is known to have similar effect to Lasso regularization. #' # Try experimenting with various values of top_k, eta, nrounds, #' # as well as different feature_selectors. #' #' # For xgb.cv: #' bst <- xgb.cv( #' param, #' dtrain, #' nfold = 5, #' nrounds = 100, #' eta = 0.8, #' callbacks = list(xgb.cb.gblinear.history()) #' ) #' # coefficients in the CV fold #3 #' matplot(xgb.gblinear.history(bst)[[3]], type = "l") #' #' #' #### Multiclass classification: #' dtrain <- xgb.DMatrix(scale(x), label = as.numeric(iris$Species) - 1, nthread = nthread) #' #' param <- list( #' booster = "gblinear", #' objective = "multi:softprob", #' num_class = 3, #' lambda = 0.0003, #' alpha = 0.0003, #' nthread = nthread #' ) #' #' # For the default linear updater 'shotgun' it sometimes is helpful #' # to use smaller eta to reduce instability #' bst <- xgb.train( #' param, #' dtrain, #' list(tr = dtrain), #' nrounds = 50, #' eta = 0.5, #' callbacks = list(xgb.cb.gblinear.history()) #' ) #' #' # Will plot the coefficient paths separately for each class: #' matplot(xgb.gblinear.history(bst, class_index = 0), type = "l") #' matplot(xgb.gblinear.history(bst, class_index = 1), type = "l") #' matplot(xgb.gblinear.history(bst, class_index = 2), type = "l") #' #' # CV: #' bst <- xgb.cv( #' param, #' dtrain, #' nfold = 5, #' nrounds = 70, #' eta = 0.5, #' callbacks = list(xgb.cb.gblinear.history(FALSE)) #' ) #' # 1st fold of 1st class #' matplot(xgb.gblinear.history(bst, class_index = 0)[[1]], type = "l") #' #' @export xgb.cb.gblinear.history <- function(sparse = FALSE) { xgb.Callback( cb_name = "gblinear_history", env = as.environment(list(sparse = sparse)), f_before_training = function(env, model, data, evals, begin_iteration, end_iteration) { if (!inherits(model, "xgb.Booster")) { model <- model[[1L]]$bst } if (xgb.booster_type(model) != "gblinear") { stop("Callback 'xgb.cb.gblinear.history' is only for booster='gblinear'.") } env$coef_hist <- vector("list", end_iteration - begin_iteration + 1) env$next_idx <- 1 }, f_before_iter = NULL, f_after_iter = function(env, model, data, evals, iteration, iter_feval) { if (inherits(model, "xgb.Booster")) { coef_this <- .extract.coef(model, env$sparse) } else { coef_this <- lapply(model, function(fd) .extract.coef(fd$bst, env$sparse)) } env$coef_hist[[env$next_idx]] <- coef_this env$next_idx <- env$next_idx + 1 return(FALSE) }, f_after_training = function(env, model, data, evals, iteration, final_feval, prev_cb_res) { # in case of early stopping if (env$next_idx <= length(env$coef_hist)) { env$coef_hist <- head(env$coef_hist, env$next_idx - 1) } is_booster <- inherits(model, "xgb.Booster") if (is_booster) { out <- .list2mat(env$coef_hist, env$sparse) } else { out <- lapply( X = lapply( X = seq_along(env$coef_hist[[1]]), FUN = function(i) lapply(env$coef_hist, "[[", i) ), FUN = .list2mat, env$sparse ) } if (!is.null(prev_cb_res)) { if (is_booster) { out <- rbind(prev_cb_res, out) } else { # Note: this case should never be encountered, since training cannot # be continued from the result of xgb.cv, but this code should in # theory do the job if the situation were to be encountered. out <- lapply( out, function(lst) { lapply( seq_along(lst), function(i) rbind(prev_cb_res[[i]], lst[[i]]) ) } ) } } feature_names <- getinfo(data, "feature_name") if (!NROW(feature_names)) { feature_names <- paste0("V", seq(1L, ncol(data))) } expected_ncols <- length(feature_names) + 1 if (is_booster) { mat_ncols <- ncol(out) } else { mat_ncols <- ncol(out[[1L]]) } if (mat_ncols %% expected_ncols == 0) { feature_names <- c("(Intercept)", feature_names) n_rep <- mat_ncols / expected_ncols if (n_rep > 1) { feature_names <- unlist( lapply( seq(1, n_rep), function(cl) paste(feature_names, cl - 1, sep = ":") ) ) } if (is_booster) { colnames(out) <- feature_names } else { out <- lapply( out, function(mat) { colnames(mat) <- feature_names return(mat) } ) } } return(out) } ) } #' Extract gblinear coefficients history #' #' A helper function to extract the matrix of linear coefficients' history #' from a gblinear model created while using the [xgb.cb.gblinear.history] #' callback (which must be added manually as by default it is not used). #' #' @details #' Note that this is an R-specific function that relies on R attributes that #' are not saved when using XGBoost's own serialization functions like [xgb.load()] #' or [xgb.load.raw()]. #' #' In order for a serialized model to be accepted by this function, one must use R #' serializers such as [saveRDS()]. #' @param model Either an `xgb.Booster` or a result of [xgb.cv()], trained #' using the [xgb.cb.gblinear.history] callback, but **not** a booster #' loaded from [xgb.load()] or [xgb.load.raw()]. #' @param class_index zero-based class index to extract the coefficients for only that #' specific class in a multinomial multiclass model. When it is `NULL`, all the #' coefficients are returned. Has no effect in non-multiclass models. #' #' @return #' For an [xgb.train()] result, a matrix (either dense or sparse) with the columns #' corresponding to iteration's coefficients and the rows corresponding to boosting iterations. #' #' For an [xgb.cv()] result, a list of such matrices is returned with the elements #' corresponding to CV folds. #' #' When there is more than one coefficient per feature (e.g. multi-class classification) #' and `class_index` is not provided, #' the result will be reshaped into a vector where coefficients are arranged first by features and #' then by class (e.g. first 1 through N coefficients will be for the first class, then #' coefficients N+1 through 2N for the second class, and so on). #' @seealso [xgb.cb.gblinear.history], [coef.xgb.Booster]. #' @export xgb.gblinear.history <- function(model, class_index = NULL) { if (!(inherits(model, "xgb.Booster") || inherits(model, "xgb.cv.synchronous"))) stop("model must be an object of either xgb.Booster or xgb.cv.synchronous class") is_cv <- inherits(model, "xgb.cv.synchronous") if (!is_cv) { coef_path <- getElement(attributes(model), "gblinear_history") } else { coef_path <- getElement(model, "gblinear_history") } if (is.null(coef_path)) { stop("model must be trained while using the xgb.cb.gblinear.history() callback") } if (!is_cv) { num_class <- xgb.num_class(model) num_feat <- xgb.num_feature(model) } else { # in case of CV, the object is expected to have this info if (model$params$booster != "gblinear") stop("It does not appear to be a gblinear model") num_class <- NVL(model$params$num_class, 1) num_feat <- model$nfeatures if (is.null(num_feat)) stop("This xgb.cv result does not have nfeatures info") } if (!is.null(class_index) && num_class > 1 && (class_index[1] < 0 || class_index[1] >= num_class)) stop("class_index has to be within [0,", num_class - 1, "]") if (!is.null(class_index) && num_class > 1) { seq_take <- seq(1 + class_index * (num_feat + 1), (class_index + 1) * (num_feat + 1)) coef_path <- if (is.list(coef_path)) { lapply(coef_path, function(x) x[, seq_take]) } else { coef_path <- coef_path[, seq_take] } } return(coef_path) } .callbacks.only.train <- "save_model" .callbacks.only.cv <- "cv_predict" .process.callbacks <- function(callbacks, is_cv) { if (inherits(callbacks, "xgb.Callback")) { callbacks <- list(callbacks) } if (!is.list(callbacks)) { stop("'callbacks' must be a list.") } cb_names <- character() if (length(callbacks)) { is_callback <- sapply(callbacks, inherits, "xgb.Callback") if (!all(is_callback)) { stop("Entries in 'callbacks' must be 'xgb.Callback' objects.") } cb_names <- sapply(callbacks, function(cb) cb$cb_name) if (length(cb_names) != length(callbacks)) { stop("Passed invalid callback(s).") } if (anyDuplicated(cb_names) > 0) { stop("Callbacks must have unique names.") } if (is_cv) { if (any(.callbacks.only.train %in% cb_names)) { stop( "Passed callback(s) not supported for 'xgb.cv': ", paste(intersect(.callbacks.only.train, cb_names), collapse = ", ") ) } } else { if (any(.callbacks.only.cv %in% cb_names)) { stop( "Passed callback(s) not supported for 'xgb.train': ", paste(intersect(.callbacks.only.cv, cb_names), collapse = ", ") ) } } # Early stopping callback needs to be executed before the others if ("early_stop" %in% cb_names) { mask <- cb_names == "early_stop" callbacks <- c(list(callbacks[[which(mask)]]), callbacks[!mask]) } } return(list(callbacks = callbacks, cb_names = cb_names)) } # Note: don't try to use functions like 'append', as they will # merge the elements of the different callbacks into a single list. add.callback <- function(callbacks, cb, as_first_elt = FALSE) { if (!as_first_elt) { callbacks[[length(callbacks) + 1]] <- cb return(callbacks) } else { if (!length(callbacks)) { return(list(cb)) } new_cb <- vector("list", length(callbacks) + 1) new_cb[[1]] <- cb new_cb[seq(2, length(new_cb))] <- callbacks return(new_cb) } } has.callbacks <- function(callbacks, cb_name) { cb_names <- sapply(callbacks, function(cb) cb$name) return(cb_name %in% cb_names) }