import xgboost as xgb from xgboost.dask import DaskDMatrix from dask.distributed import Client from dask.distributed import LocalCluster from dask import array as da def main(client): n = 100 m = 100000 partition_size = 1000 X = da.random.random((m, n), partition_size) y = da.random.random(m, partition_size) dtrain = DaskDMatrix(client, X, y) output = xgb.dask.train(client, {'verbosity': 2, 'nthread': 1, 'tree_method': 'hist'}, dtrain, num_boost_round=4, evals=[(dtrain, 'train')]) bst = output['booster'] history = output['history'] prediction = xgb.dask.predict(client, bst, dtrain) print('Evaluation history:', history) return prediction if __name__ == '__main__': # or use any other clusters cluster = LocalCluster(n_workers=4, threads_per_worker=1) client = Client(cluster) main(client)