import sys import os import numpy as np import xgboost as xgb import pytest sys.path.append("tests/python") # Don't import the test class, otherwise they will run twice. import test_callback as test_cb # noqa import test_basic_models as test_bm rng = np.random.RandomState(1994) class TestGPUBasicModels: cpu_test_cb = test_cb.TestCallbacks() cpu_test_bm = test_bm.TestModels() def run_cls(self, X, y, deterministic): cls = xgb.XGBClassifier(tree_method='gpu_hist', deterministic_histogram=deterministic, single_precision_histogram=True) cls.fit(X, y) cls.get_booster().save_model('test_deterministic_gpu_hist-0.json') cls = xgb.XGBClassifier(tree_method='gpu_hist', deterministic_histogram=deterministic, single_precision_histogram=True) cls.fit(X, y) cls.get_booster().save_model('test_deterministic_gpu_hist-1.json') with open('test_deterministic_gpu_hist-0.json', 'r') as fd: model_0 = fd.read() with open('test_deterministic_gpu_hist-1.json', 'r') as fd: model_1 = fd.read() os.remove('test_deterministic_gpu_hist-0.json') os.remove('test_deterministic_gpu_hist-1.json') return hash(model_0), hash(model_1) def test_custom_objective(self): self.cpu_test_bm.run_custom_objective("gpu_hist") def test_eta_decay_gpu_hist(self): self.cpu_test_cb.run_eta_decay('gpu_hist', True) self.cpu_test_cb.run_eta_decay('gpu_hist', False) def test_deterministic_gpu_hist(self): kRows = 1000 kCols = 64 kClasses = 4 # Create large values to force rounding. X = np.random.randn(kRows, kCols) * 1e4 y = np.random.randint(0, kClasses, size=kRows) * 1e4 model_0, model_1 = self.run_cls(X, y, True) assert model_0 == model_1 model_0, model_1 = self.run_cls(X, y, False) assert model_0 != model_1 def test_invalid_gpu_id(self): X = np.random.randn(10, 5) * 1e4 y = np.random.randint(0, 2, size=10) * 1e4 # should pass with invalid gpu id cls1 = xgb.XGBClassifier(tree_method='gpu_hist', gpu_id=9999) cls1.fit(X, y) # should throw error with fail_on_invalid_gpu_id enabled cls2 = xgb.XGBClassifier(tree_method='gpu_hist', gpu_id=9999, fail_on_invalid_gpu_id=True) try: cls2.fit(X, y) assert False, "Should have failed with with fail_on_invalid_gpu_id enabled" except xgb.core.XGBoostError as err: assert "gpu_id 9999 is invalid" in str(err)