require(xgboost) # load in the agaricus dataset data(agaricus.train, package='xgboost') data(agaricus.test, package='xgboost') dtrain <- xgb.DMatrix(agaricus.train$data, label = agaricus.train$label) dtest <- xgb.DMatrix(agaricus.test$data, label = agaricus.test$label) nround <- 2 param <- list(max.depth=2,eta=1,silent=1,objective='binary:logistic') cat('running cross validation\n') # do cross validation, this will print result out as # [iteration] metric_name:mean_value+std_value # std_value is standard deviation of the metric xgb.cv(param, dtrain, nround, nfold=5, metrics={'error'}) cat('running cross validation, disable standard deviation display\n') # do cross validation, this will print result out as # [iteration] metric_name:mean_value+std_value # std_value is standard deviation of the metric xgb.cv(param, dtrain, nround, nfold=5, metrics={'error'}, showsd = FALSE) ### # you can also do cross validation with cutomized loss function # See custom_objective.R ## print ('running cross validation, with cutomsized loss function') logregobj <- function(preds, dtrain) { labels <- getinfo(dtrain, "label") preds <- 1/(1 + exp(-preds)) grad <- preds - labels hess <- preds * (1 - preds) return(list(grad = grad, hess = hess)) } evalerror <- function(preds, dtrain) { labels <- getinfo(dtrain, "label") err <- as.numeric(sum(labels != (preds > 0)))/length(labels) return(list(metric = "error", value = err)) } param <- list(max.depth=2,eta=1,silent=1) # train with customized objective xgb.cv(param, dtrain, nround, nfold = 5, obj = logregobj, feval=evalerror) # do cross validation with prediction values for each fold res <- xgb.cv(param, dtrain, nround, nfold=5, prediction = TRUE) res$dt length(res$pred)