import sys import numpy as np import pytest import xgboost as xgb from xgboost import testing as tm sys.path.append("tests/python") import test_monotone_constraints as tmc rng = np.random.RandomState(1994) def non_decreasing(L): return all((x - y) < 0.001 for x, y in zip(L, L[1:])) def non_increasing(L): return all((y - x) < 0.001 for x, y in zip(L, L[1:])) def assert_constraint(constraint, tree_method): from sklearn.datasets import make_regression n = 1000 X, y = make_regression(n, random_state=rng, n_features=1, n_informative=1) dtrain = xgb.DMatrix(X, y) param = {} param["tree_method"] = tree_method param["monotone_constraints"] = "(" + str(constraint) + ")" bst = xgb.train(param, dtrain) dpredict = xgb.DMatrix(X[X[:, 0].argsort()]) pred = bst.predict(dpredict) if constraint > 0: assert non_decreasing(pred) elif constraint < 0: assert non_increasing(pred) @pytest.mark.skipif(**tm.no_sklearn()) def test_gpu_hist_basic(): assert_constraint(1, "gpu_hist") assert_constraint(-1, "gpu_hist") def test_gpu_hist_depthwise(): params = { "tree_method": "gpu_hist", "grow_policy": "depthwise", "monotone_constraints": "(1, -1)", } model = xgb.train(params, tmc.training_dset) tmc.is_correctly_constrained(model) def test_gpu_hist_lossguide(): params = { "tree_method": "gpu_hist", "grow_policy": "lossguide", "monotone_constraints": "(1, -1)", } model = xgb.train(params, tmc.training_dset) tmc.is_correctly_constrained(model)