#ifndef XGBOOST_WRAPPER_H_ #define XGBOOST_WRAPPER_H_ /*! * \file xgboost_wrapperh * \author Tianqi Chen * \brief a C style wrapper of xgboost * can be used to create wrapper of other languages */ #include extern "C" { /*! * \brief load a data matrix * \return a loaded data matrix */ void* XGDMatrixCreateFromFile(const char *fname, int silent); /*! * \brief create a matrix content from csr format * \param handle a instance of data matrix * \param indptr pointer to row headers * \param indices findex * \param data fvalue * \param nindptr number of rows in the matix + 1 * \param nelem number of nonzero elements in the matrix * \return created dmatrix */ void* XGDMatrixCreateFromCSR(const size_t *indptr, const unsigned *indices, const float *data, size_t nindptr, size_t nelem); /*! * \brief create matrix content from dense matrix * \param handle a instance of data matrix * \param data pointer to the data space * \param nrow number of rows * \param ncol number columns * \param missing which value to represent missing value * \return created dmatrix */ void* XGDMatrixCreateFromMat(const float *data, size_t nrow, size_t ncol, float missing); /*! * \brief create a new dmatrix from sliced content of existing matrix * \param handle instance of data matrix to be sliced * \param idxset index set * \param len length of index set * \return a sliced new matrix */ void* XGDMatrixSliceDMatrix(void *handle, const int *idxset, size_t len); /*! * \brief free space in data matrix */ void XGDMatrixFree(void *handle); /*! * \brief load a data matrix into binary file * \param handle a instance of data matrix * \param fname file name * \param silent print statistics when saving */ void XGDMatrixSaveBinary(void *handle, const char *fname, int silent); /*! * \brief set float vector to a content in info * \param handle a instance of data matrix * \param field field name, can be label, weight * \param array pointer to float vector * \param len length of array */ void XGDMatrixSetFloatInfo(void *handle, const char *field, const float *array, size_t len); /*! * \brief set label of the training matrix * \param handle a instance of data matrix * \param group pointer to group size * \param len length of array */ void XGDMatrixSetGroup(void *handle, const unsigned *group, size_t len); /*! * \brief get float info vector from matrix * \param handle a instance of data matrix * \param len used to set result length * \param field field name * \return pointer to the label */ const float* XGDMatrixGetFloatInfo(const void *handle, const char *field, size_t* out_len); /*! * \brief return number of rows */ size_t XGDMatrixNumRow(const void *handle); // --- start XGBoost class /*! * \brief create xgboost learner * \param dmats matrices that are set to be cached * \param len length of dmats */ void *XGBoosterCreate(void* dmats[], size_t len); /*! * \brief free obj in handle * \param handle handle to be freed */ void XGBoosterFree(void* handle); /*! * \brief set parameters * \param handle handle * \param name parameter name * \param val value of parameter */ void XGBoosterSetParam(void *handle, const char *name, const char *value); /*! * \brief update the model in one round using dtrain * \param handle handle * \param iter current iteration rounds * \param dtrain training data */ void XGBoosterUpdateOneIter(void *handle, int iter, void *dtrain); /*! * \brief update the model, by directly specify gradient and second order gradient, * this can be used to replace UpdateOneIter, to support customized loss function * \param handle handle * \param dtrain training data * \param grad gradient statistics * \param hess second order gradient statistics * \param len length of grad/hess array */ void XGBoosterBoostOneIter(void *handle, void *dtrain, float *grad, float *hess, size_t len); /*! * \brief get evaluation statistics for xgboost * \param handle handle * \param iter current iteration rounds * \param dmats pointers to data to be evaluated * \param evnames pointers to names of each data * \param len length of dmats * \return the string containing evaluation stati */ const char *XGBoosterEvalOneIter(void *handle, int iter, void *dmats[], const char *evnames[], size_t len); /*! * \brief make prediction based on dmat * \param handle handle * \param dmat data matrix * \param output_margin whether only output raw margin value * \param len used to store length of returning result */ const float *XGBoosterPredict(void *handle, void *dmat, int output_margin, size_t *len); /*! * \brief load model from existing file * \param handle handle * \param fname file name */ void XGBoosterLoadModel(void *handle, const char *fname); /*! * \brief save model into existing file * \param handle handle * \param fname file name */ void XGBoosterSaveModel(const void *handle, const char *fname); /*! * \brief dump model, return array of strings representing model dump * \param handle handle * \param fmap name to fmap can be empty string * \param out_len length of output array * \return char *data[], representing dump of each model */ const char** XGBoosterDumpModel(void *handle, const char *fmap, size_t *out_len); }; #endif // XGBOOST_WRAPPER_H_