#' eXtreme Gradient Boosting Training #' #' `xgb.train()` is an advanced interface for training an xgboost model. #' The [xgboost()] function is a simpler wrapper for `xgb.train()`. #' #' @param params the list of parameters. The complete list of parameters is #' available in the [online documentation](http://xgboost.readthedocs.io/en/latest/parameter.html). #' Below is a shorter summary: #' #' **1. General Parameters** #' #' - `booster`: Which booster to use, can be `gbtree` or `gblinear`. Default: `gbtree`. #' #' **2. Booster Parameters** #' #' **2.1. Parameters for Tree Booster** #' - `eta`: The learning rate: scale the contribution of each tree by a factor of `0 < eta < 1` #' when it is added to the current approximation. #' Used to prevent overfitting by making the boosting process more conservative. #' Lower value for `eta` implies larger value for `nrounds`: low `eta` value means model #' more robust to overfitting but slower to compute. Default: 0.3. #' - `gamma`: Minimum loss reduction required to make a further partition on a leaf node of the tree. #' the larger, the more conservative the algorithm will be. #' - `max_depth`: Maximum depth of a tree. Default: 6. #' - `min_child_weight`: Minimum sum of instance weight (hessian) needed in a child. #' If the tree partition step results in a leaf node with the sum of instance weight less than min_child_weight, #' then the building process will give up further partitioning. #' In linear regression mode, this simply corresponds to minimum number of instances needed to be in each node. #' The larger, the more conservative the algorithm will be. Default: 1. #' - `subsample`: Subsample ratio of the training instance. #' Setting it to 0.5 means that xgboost randomly collected half of the data instances to grow trees #' and this will prevent overfitting. It makes computation shorter (because less data to analyse). #' It is advised to use this parameter with `eta` and increase `nrounds`. Default: 1. #' - `colsample_bytree`: Subsample ratio of columns when constructing each tree. Default: 1. #' - `lambda`: L2 regularization term on weights. Default: 1. #' - `alpha`: L1 regularization term on weights. (there is no L1 reg on bias because it is not important). Default: 0. #' - `num_parallel_tree`: Experimental parameter. number of trees to grow per round. #' Useful to test Random Forest through XGBoost. #' (set `colsample_bytree < 1`, `subsample < 1` and `round = 1`) accordingly. #' Default: 1. #' - `monotone_constraints`: A numerical vector consists of `1`, `0` and `-1` with its length #' equals to the number of features in the training data. #' `1` is increasing, `-1` is decreasing and `0` is no constraint. #' - `interaction_constraints`: A list of vectors specifying feature indices of permitted interactions. #' Each item of the list represents one permitted interaction where specified features are allowed to interact with each other. #' Feature index values should start from `0` (`0` references the first column). #' Leave argument unspecified for no interaction constraints. #' #' **2.2. Parameters for Linear Booster** #' #' - `lambda`: L2 regularization term on weights. Default: 0. #' - `lambda_bias`: L2 regularization term on bias. Default: 0. #' - `alpha`: L1 regularization term on weights. (there is no L1 reg on bias because it is not important). Default: 0. #' #' **3. Task Parameters** #' #' - `objective`: Specifies the learning task and the corresponding learning objective. #' users can pass a self-defined function to it. The default objective options are below: #' - `reg:squarederror`: Regression with squared loss (default). #' - `reg:squaredlogerror`: Regression with squared log loss \eqn{1/2 \cdot (\log(pred + 1) - \log(label + 1))^2}. #' All inputs are required to be greater than -1. #' Also, see metric rmsle for possible issue with this objective. #' - `reg:logistic`: Logistic regression. #' - `reg:pseudohubererror`: Regression with Pseudo Huber loss, a twice differentiable alternative to absolute loss. #' - `binary:logistic`: Logistic regression for binary classification. Output probability. #' - `binary:logitraw`: Logistic regression for binary classification, output score before logistic transformation. #' - `binary:hinge`: Hinge loss for binary classification. This makes predictions of 0 or 1, rather than producing probabilities. #' - `count:poisson`: Poisson regression for count data, output mean of Poisson distribution. #' The parameter `max_delta_step` is set to 0.7 by default in poisson regression #' (used to safeguard optimization). #' - `survival:cox`: Cox regression for right censored survival time data (negative values are considered right censored). #' Note that predictions are returned on the hazard ratio scale (i.e., as HR = exp(marginal_prediction) in the proportional #' hazard function \eqn{h(t) = h_0(t) \cdot HR}. #' - `survival:aft`: Accelerated failure time model for censored survival time data. See #' [Survival Analysis with Accelerated Failure Time](https://xgboost.readthedocs.io/en/latest/tutorials/aft_survival_analysis.html) #' for details. #' The parameter `aft_loss_distribution` specifies the Probability Density Function #' used by `survival:aft` and the `aft-nloglik` metric. #' - `multi:softmax`: Set xgboost to do multiclass classification using the softmax objective. #' Class is represented by a number and should be from 0 to `num_class - 1`. #' - `multi:softprob`: Same as softmax, but prediction outputs a vector of ndata * nclass elements, which can be #' further reshaped to ndata, nclass matrix. The result contains predicted probabilities of each data point belonging #' to each class. #' - `rank:pairwise`: Set XGBoost to do ranking task by minimizing the pairwise loss. #' - `rank:ndcg`: Use LambdaMART to perform list-wise ranking where #' [Normalized Discounted Cumulative Gain (NDCG)](https://en.wikipedia.org/wiki/Discounted_cumulative_gain) is maximized. #' - `rank:map`: Use LambdaMART to perform list-wise ranking where #' [Mean Average Precision (MAP)](https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Mean_average_precision) #' is maximized. #' - `reg:gamma`: Gamma regression with log-link. Output is a mean of gamma distribution. #' It might be useful, e.g., for modeling insurance claims severity, or for any outcome that might be #' [gamma-distributed](https://en.wikipedia.org/wiki/Gamma_distribution#Applications). #' - `reg:tweedie`: Tweedie regression with log-link. #' It might be useful, e.g., for modeling total loss in insurance, or for any outcome that might be #' [Tweedie-distributed](https://en.wikipedia.org/wiki/Tweedie_distribution#Applications). #' #' For custom objectives, one should pass a function taking as input the current predictions (as a numeric #' vector or matrix) and the training data (as an `xgb.DMatrix` object) that will return a list with elements #' `grad` and `hess`, which should be numeric vectors or matrices with number of rows matching to the numbers #' of rows in the training data (same shape as the predictions that are passed as input to the function). #' For multi-valued custom objectives, should have shape `[nrows, ntargets]`. Note that negative values of #' the Hessian will be clipped, so one might consider using the expected Hessian (Fisher information) if the #' objective is non-convex. #' #' See the tutorials [Custom Objective and Evaluation Metric](https://xgboost.readthedocs.io/en/stable/tutorials/custom_metric_obj.html) #' and [Advanced Usage of Custom Objectives](https://xgboost.readthedocs.io/en/stable/tutorials/advanced_custom_obj) #' for more information about custom objectives. #' #' - `base_score`: The initial prediction score of all instances, global bias. Default: 0.5. #' - `eval_metric`: Evaluation metrics for validation data. #' Users can pass a self-defined function to it. #' Default: metric will be assigned according to objective #' (rmse for regression, and error for classification, mean average precision for ranking). #' List is provided in detail section. #' @param data Training dataset. `xgb.train()` accepts only an `xgb.DMatrix` as the input. #' [xgboost()], in addition, also accepts `matrix`, `dgCMatrix`, or name of a local data file. #' @param nrounds Max number of boosting iterations. #' @param evals Named list of `xgb.DMatrix` datasets to use for evaluating model performance. #' Metrics specified in either `eval_metric` or `feval` will be computed for each #' of these datasets during each boosting iteration, and stored in the end as a field named #' `evaluation_log` in the resulting object. When either `verbose>=1` or #' [xgb.cb.print.evaluation()] callback is engaged, the performance results are continuously #' printed out during the training. #' E.g., specifying `evals=list(validation1=mat1, validation2=mat2)` allows to track #' the performance of each round's model on mat1 and mat2. #' @param obj Customized objective function. Should take two arguments: the first one will be the #' current predictions (either a numeric vector or matrix depending on the number of targets / classes), #' and the second one will be the `data` DMatrix object that is used for training. #' #' It should return a list with two elements `grad` and `hess` (in that order), as either #' numeric vectors or numeric matrices depending on the number of targets / classes (same #' dimension as the predictions that are passed as first argument). #' @param feval Customized evaluation function. Just like `obj`, should take two arguments, with #' the first one being the predictions and the second one the `data` DMatrix. #' #' Should return a list with two elements `metric` (name that will be displayed for this metric, #' should be a string / character), and `value` (the number that the function calculates, should #' be a numeric scalar). #' #' Note that even if passing `feval`, objectives also have an associated default metric that #' will be evaluated in addition to it. In order to disable the built-in metric, one can pass #' parameter `disable_default_eval_metric = TRUE`. #' @param verbose If 0, xgboost will stay silent. If 1, it will print information about performance. #' If 2, some additional information will be printed out. #' Note that setting `verbose > 0` automatically engages the #' `xgb.cb.print.evaluation(period=1)` callback function. #' @param print_every_n Print each nth iteration evaluation messages when `verbose>0`. #' Default is 1 which means all messages are printed. This parameter is passed to the #' [xgb.cb.print.evaluation()] callback. #' @param early_stopping_rounds If `NULL`, the early stopping function is not triggered. #' If set to an integer `k`, training with a validation set will stop if the performance #' doesn't improve for `k` rounds. Setting this parameter engages the [xgb.cb.early.stop()] callback. #' @param maximize If `feval` and `early_stopping_rounds` are set, then this parameter must be set as well. #' When it is `TRUE`, it means the larger the evaluation score the better. #' This parameter is passed to the [xgb.cb.early.stop()] callback. #' @param save_period When not `NULL`, model is saved to disk after every `save_period` rounds. #' 0 means save at the end. The saving is handled by the [xgb.cb.save.model()] callback. #' @param save_name the name or path for periodically saved model file. #' @param xgb_model A previously built model to continue the training from. #' Could be either an object of class `xgb.Booster`, or its raw data, or the name of a #' file with a previously saved model. #' @param callbacks A list of callback functions to perform various task during boosting. #' See [xgb.Callback()]. Some of the callbacks are automatically created depending on the #' parameters' values. User can provide either existing or their own callback methods in order #' to customize the training process. #' #' Note that some callbacks might try to leave attributes in the resulting model object, #' such as an evaluation log (a `data.table` object) - be aware that these objects are kept #' as R attributes, and thus do not get saved when using XGBoost's own serializaters like #' [xgb.save()] (but are kept when using R serializers like [saveRDS()]). #' @param ... other parameters to pass to `params`. #' #' @return An object of class `xgb.Booster`. #' #' @details #' These are the training functions for [xgboost()]. #' #' The `xgb.train()` interface supports advanced features such as `evals`, #' customized objective and evaluation metric functions, therefore it is more flexible #' than the [xgboost()] interface. #' #' Parallelization is automatically enabled if OpenMP is present. #' Number of threads can also be manually specified via the `nthread` parameter. #' #' While in other interfaces, the default random seed defaults to zero, in R, if a parameter `seed` #' is not manually supplied, it will generate a random seed through R's own random number generator, #' whose seed in turn is controllable through `set.seed`. If `seed` is passed, it will override the #' RNG from R. #' #' The evaluation metric is chosen automatically by XGBoost (according to the objective) #' when the `eval_metric` parameter is not provided. #' User may set one or several `eval_metric` parameters. #' Note that when using a customized metric, only this single metric can be used. #' The following is the list of built-in metrics for which XGBoost provides optimized implementation: #' - `rmse`: Root mean square error. \url{https://en.wikipedia.org/wiki/Root_mean_square_error} #' - `logloss`: Negative log-likelihood. \url{https://en.wikipedia.org/wiki/Log-likelihood} #' - `mlogloss`: Multiclass logloss. \url{https://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html} #' - `error`: Binary classification error rate. It is calculated as `(# wrong cases) / (# all cases)`. #' By default, it uses the 0.5 threshold for predicted values to define negative and positive instances. #' Different threshold (e.g., 0.) could be specified as `error@0`. #' - `merror`: Multiclass classification error rate. It is calculated as `(# wrong cases) / (# all cases)`. #' - `mae`: Mean absolute error. #' - `mape`: Mean absolute percentage error. #' - `auc`: Area under the curve. #' \url{https://en.wikipedia.org/wiki/Receiver_operating_characteristic#'Area_under_curve} for ranking evaluation. #' - `aucpr`: Area under the PR curve. \url{https://en.wikipedia.org/wiki/Precision_and_recall} for ranking evaluation. #' - `ndcg`: Normalized Discounted Cumulative Gain (for ranking task). \url{https://en.wikipedia.org/wiki/NDCG} #' #' The following callbacks are automatically created when certain parameters are set: #' - [xgb.cb.print.evaluation()] is turned on when `verbose > 0` and the `print_every_n` #' parameter is passed to it. #' - [xgb.cb.evaluation.log()] is on when `evals` is present. #' - [xgb.cb.early.stop()]: When `early_stopping_rounds` is set. #' - [xgb.cb.save.model()]: When `save_period > 0` is set. #' #' Note that objects of type `xgb.Booster` as returned by this function behave a bit differently #' from typical R objects (it's an 'altrep' list class), and it makes a separation between #' internal booster attributes (restricted to jsonifyable data), accessed through [xgb.attr()] #' and shared between interfaces through serialization functions like [xgb.save()]; and #' R-specific attributes (typically the result from a callback), accessed through [attributes()] #' and [attr()], which are otherwise #' only used in the R interface, only kept when using R's serializers like [saveRDS()], and #' not anyhow used by functions like `predict.xgb.Booster()`. #' #' Be aware that one such R attribute that is automatically added is `params` - this attribute #' is assigned from the `params` argument to this function, and is only meant to serve as a #' reference for what went into the booster, but is not used in other methods that take a booster #' object - so for example, changing the booster's configuration requires calling `xgb.config<-` #' or `xgb.parameters<-`, while simply modifying `attributes(model)$params$<...>` will have no #' effect elsewhere. #' #' @seealso [xgb.Callback()], [predict.xgb.Booster()], [xgb.cv()] #' #' @references #' Tianqi Chen and Carlos Guestrin, "XGBoost: A Scalable Tree Boosting System", #' 22nd SIGKDD Conference on Knowledge Discovery and Data Mining, 2016, \url{https://arxiv.org/abs/1603.02754} #' #' @examples #' data(agaricus.train, package = "xgboost") #' data(agaricus.test, package = "xgboost") #' #' ## Keep the number of threads to 1 for examples #' nthread <- 1 #' data.table::setDTthreads(nthread) #' #' dtrain <- with( #' agaricus.train, xgb.DMatrix(data, label = label, nthread = nthread) #' ) #' dtest <- with( #' agaricus.test, xgb.DMatrix(data, label = label, nthread = nthread) #' ) #' evals <- list(train = dtrain, eval = dtest) #' #' ## A simple xgb.train example: #' param <- list( #' max_depth = 2, #' eta = 1, #' nthread = nthread, #' objective = "binary:logistic", #' eval_metric = "auc" #' ) #' bst <- xgb.train(param, dtrain, nrounds = 2, evals = evals, verbose = 0) #' #' ## An xgb.train example where custom objective and evaluation metric are #' ## used: #' logregobj <- function(preds, dtrain) { #' labels <- getinfo(dtrain, "label") #' preds <- 1/(1 + exp(-preds)) #' grad <- preds - labels #' hess <- preds * (1 - preds) #' return(list(grad = grad, hess = hess)) #' } #' evalerror <- function(preds, dtrain) { #' labels <- getinfo(dtrain, "label") #' err <- as.numeric(sum(labels != (preds > 0)))/length(labels) #' return(list(metric = "error", value = err)) #' } #' #' # These functions could be used by passing them either: #' # as 'objective' and 'eval_metric' parameters in the params list: #' param <- list( #' max_depth = 2, #' eta = 1, #' nthread = nthread, #' objective = logregobj, #' eval_metric = evalerror #' ) #' bst <- xgb.train(param, dtrain, nrounds = 2, evals = evals, verbose = 0) #' #' # or through the ... arguments: #' param <- list(max_depth = 2, eta = 1, nthread = nthread) #' bst <- xgb.train( #' param, #' dtrain, #' nrounds = 2, #' evals = evals, #' verbose = 0, #' objective = logregobj, #' eval_metric = evalerror #' ) #' #' # or as dedicated 'obj' and 'feval' parameters of xgb.train: #' bst <- xgb.train( #' param, dtrain, nrounds = 2, evals = evals, obj = logregobj, feval = evalerror #' ) #' #' #' ## An xgb.train example of using variable learning rates at each iteration: #' param <- list( #' max_depth = 2, #' eta = 1, #' nthread = nthread, #' objective = "binary:logistic", #' eval_metric = "auc" #' ) #' my_etas <- list(eta = c(0.5, 0.1)) #' #' bst <- xgb.train( #' param, #' dtrain, #' nrounds = 2, #' evals = evals, #' verbose = 0, #' callbacks = list(xgb.cb.reset.parameters(my_etas)) #' ) #' #' ## Early stopping: #' bst <- xgb.train( #' param, dtrain, nrounds = 25, evals = evals, early_stopping_rounds = 3 #' ) #' #' ## An 'xgboost' interface example: #' bst <- xgboost( #' x = agaricus.train$data, #' y = factor(agaricus.train$label), #' params = list(max_depth = 2, eta = 1), #' nthread = nthread, #' nrounds = 2 #' ) #' pred <- predict(bst, agaricus.test$data) #' #' @export xgb.train <- function(params = list(), data, nrounds, evals = list(), obj = NULL, feval = NULL, verbose = 1, print_every_n = 1L, early_stopping_rounds = NULL, maximize = NULL, save_period = NULL, save_name = "xgboost.model", xgb_model = NULL, callbacks = list(), ...) { check.deprecation(...) params <- check.booster.params(params, ...) check.custom.obj() check.custom.eval() # data & evals checks dtrain <- data if (!inherits(dtrain, "xgb.DMatrix")) stop("second argument dtrain must be xgb.DMatrix") if (length(evals) > 0) { if (typeof(evals) != "list" || !all(vapply(evals, inherits, logical(1), what = 'xgb.DMatrix'))) stop("'evals' must be a list of xgb.DMatrix elements") evnames <- names(evals) if (is.null(evnames) || any(evnames == "")) stop("each element of 'evals' must have a name tag") } # Handle multiple evaluation metrics given as a list for (m in params$eval_metric) { params <- c(params, list(eval_metric = m)) } params <- c(params) params['validate_parameters'] <- TRUE if (!("seed" %in% names(params))) { params[["seed"]] <- sample(.Machine$integer.max, size = 1) } # callbacks tmp <- .process.callbacks(callbacks, is_cv = FALSE) callbacks <- tmp$callbacks cb_names <- tmp$cb_names rm(tmp) # Early stopping callback (should always come first) if (!is.null(early_stopping_rounds) && !("early_stop" %in% cb_names)) { callbacks <- add.callback( callbacks, xgb.cb.early.stop( early_stopping_rounds, maximize = maximize, verbose = verbose ), as_first_elt = TRUE ) } # evaluation printing callback print_every_n <- max(as.integer(print_every_n), 1L) if (verbose && !("print_evaluation" %in% cb_names)) { callbacks <- add.callback(callbacks, xgb.cb.print.evaluation(print_every_n)) } # evaluation log callback: it is automatically enabled when 'evals' is provided if (length(evals) && !("evaluation_log" %in% cb_names)) { callbacks <- add.callback(callbacks, xgb.cb.evaluation.log()) } # Model saving callback if (!is.null(save_period) && !("save_model" %in% cb_names)) { callbacks <- add.callback(callbacks, xgb.cb.save.model(save_period, save_name)) } # The tree updating process would need slightly different handling is_update <- NVL(params[['process_type']], '.') == 'update' # Construct a booster (either a new one or load from xgb_model) bst <- xgb.Booster( params = params, cachelist = append(evals, dtrain), modelfile = xgb_model ) niter_init <- bst$niter bst <- bst$bst .Call( XGBoosterCopyInfoFromDMatrix_R, xgb.get.handle(bst), dtrain ) if (is_update && nrounds > niter_init) stop("nrounds cannot be larger than ", niter_init, " (nrounds of xgb_model)") niter_skip <- ifelse(is_update, 0, niter_init) begin_iteration <- niter_skip + 1 end_iteration <- niter_skip + nrounds .execute.cb.before.training( callbacks, bst, dtrain, evals, begin_iteration, end_iteration ) # the main loop for boosting iterations for (iteration in begin_iteration:end_iteration) { .execute.cb.before.iter( callbacks, bst, dtrain, evals, iteration ) xgb.iter.update( bst = bst, dtrain = dtrain, iter = iteration - 1, obj = obj ) bst_evaluation <- NULL if (length(evals) > 0) { bst_evaluation <- xgb.iter.eval( bst = bst, evals = evals, iter = iteration - 1, feval = feval ) } should_stop <- .execute.cb.after.iter( callbacks, bst, dtrain, evals, iteration, bst_evaluation ) if (should_stop) break } cb_outputs <- .execute.cb.after.training( callbacks, bst, dtrain, evals, iteration, bst_evaluation ) extra_attrs <- list( call = match.call(), params = params ) curr_attrs <- attributes(bst) if (NROW(curr_attrs)) { curr_attrs <- curr_attrs[ setdiff( names(curr_attrs), c(names(extra_attrs), names(cb_outputs)) ) ] } curr_attrs <- c(extra_attrs, curr_attrs) if (NROW(cb_outputs)) { curr_attrs <- c(curr_attrs, cb_outputs) } attributes(bst) <- curr_attrs return(bst) }