/** * Copyright 2017-2023 XGBoost contributors */ #pragma once #include // thrust::upper_bound #include #include #include #include // thrust::seq #include // gather #include #include // make_transform_output_iterator #include #include #include #include #include #include #include #include #include #include // for size_t #include #include #include #include #include #include #include #include #include "../collective/communicator-inl.h" #include "common.h" #include "xgboost/global_config.h" #include "xgboost/host_device_vector.h" #include "xgboost/logging.h" #include "xgboost/span.h" #ifdef XGBOOST_USE_NCCL #include "nccl.h" #endif // XGBOOST_USE_NCCL #if defined(XGBOOST_USE_RMM) && XGBOOST_USE_RMM == 1 #include "rmm/mr/device/per_device_resource.hpp" #include "rmm/mr/device/thrust_allocator_adaptor.hpp" #include "rmm/version_config.hpp" #if !defined(RMM_VERSION_MAJOR) || !defined(RMM_VERSION_MINOR) #error "Please use RMM version 0.18 or later" #elif RMM_VERSION_MAJOR == 0 && RMM_VERSION_MINOR < 18 #error "Please use RMM version 0.18 or later" #endif // !defined(RMM_VERSION_MAJOR) || !defined(RMM_VERSION_MINOR) #endif // defined(XGBOOST_USE_RMM) && XGBOOST_USE_RMM == 1 namespace dh { // FIXME(jiamingy): Remove this once we get rid of cub submodule. constexpr bool BuildWithCUDACub() { #if defined(THRUST_IGNORE_CUB_VERSION_CHECK) && THRUST_IGNORE_CUB_VERSION_CHECK == 1 return false; #else return true; #endif // defined(THRUST_IGNORE_CUB_VERSION_CHECK) && THRUST_IGNORE_CUB_VERSION_CHECK == 1 } namespace detail { template struct AtomicDispatcher; template <> struct AtomicDispatcher { using Type = unsigned int; // NOLINT static_assert(sizeof(Type) == sizeof(uint32_t), "Unsigned should be of size 32 bits."); }; template <> struct AtomicDispatcher { using Type = unsigned long long; // NOLINT static_assert(sizeof(Type) == sizeof(uint64_t), "Unsigned long long should be of size 64 bits."); }; } // namespace detail } // namespace dh // atomicAdd is not defined for size_t. template ::value && !std::is_same::value> * = // NOLINT nullptr> XGBOOST_DEV_INLINE T atomicAdd(T *addr, T v) { // NOLINT using Type = typename dh::detail::AtomicDispatcher::Type; Type ret = ::atomicAdd(reinterpret_cast(addr), static_cast(v)); return static_cast(ret); } namespace dh { #ifdef XGBOOST_USE_RCCL #define safe_nccl(ans) ThrowOnNcclError((ans), __FILE__, __LINE__) inline ncclResult_t ThrowOnNcclError(ncclResult_t code, const char *file, int line) { if (code != ncclSuccess) { std::stringstream ss; ss << "RCCL failure: " << ncclGetErrorString(code) << "."; ss << " " << file << "(" << line << ")\n"; if (code == ncclUnhandledCudaError) { // nccl usually preserves the last error so we can get more details. auto err = hipPeekAtLastError(); ss << " CUDA error: " << thrust::system_error(err, thrust::cuda_category()).what() << "\n"; } else if (code == ncclSystemError) { ss << " This might be caused by a network configuration issue. Please consider specifying " "the network interface for NCCL via environment variables listed in its reference: " "`https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/env.html`.\n"; } LOG(FATAL) << ss.str(); } return code; } #endif inline int32_t CudaGetPointerDevice(void const *ptr) { int32_t device = -1; hipPointerAttribute_t attr; dh::safe_cuda(hipPointerGetAttributes(&attr, ptr)); device = attr.device; return device; } inline size_t AvailableMemory(int device_idx) { size_t device_free = 0; size_t device_total = 0; safe_cuda(hipSetDevice(device_idx)); dh::safe_cuda(hipMemGetInfo(&device_free, &device_total)); return device_free; } inline int32_t CurrentDevice() { int32_t device = 0; safe_cuda(hipGetDevice(&device)); return device; } inline size_t TotalMemory(int device_idx) { size_t device_free = 0; size_t device_total = 0; safe_cuda(hipSetDevice(device_idx)); dh::safe_cuda(hipMemGetInfo(&device_free, &device_total)); return device_total; } /** * \fn inline int MaxSharedMemory(int device_idx) * * \brief Maximum shared memory per block on this device. * * \param device_idx Zero-based index of the device. */ inline size_t MaxSharedMemory(int device_idx) { int max_shared_memory = 0; dh::safe_cuda(hipDeviceGetAttribute (&max_shared_memory, hipDeviceAttributeMaxSharedMemoryPerBlock, device_idx)); return static_cast(max_shared_memory); } /** * \fn inline int MaxSharedMemoryOptin(int device_idx) * * \brief Maximum dynamic shared memory per thread block on this device that can be opted into when using hipFuncSetAttribute(). * * \param device_idx Zero-based index of the device. */ inline size_t MaxSharedMemoryOptin(int device_idx) { int max_shared_memory = 0; #if 0 /* CUDA Only */ dh::safe_cuda(hipDeviceGetAttribute (&max_shared_memory, hipDeviceAttributeSharedMemPerBlockOptin, device_idx)); #endif return static_cast(max_shared_memory); } inline void CheckComputeCapability() { for (int d_idx = 0; d_idx < xgboost::common::AllVisibleGPUs(); ++d_idx) { hipDeviceProp_t prop; safe_cuda(hipGetDeviceProperties(&prop, d_idx)); std::ostringstream oss; oss << "CUDA Capability Major/Minor version number: " << prop.major << "." << prop.minor << " is insufficient. Need >=3.5"; int failed = prop.major < 3 || (prop.major == 3 && prop.minor < 5); if (failed) LOG(WARNING) << oss.str() << " for device: " << d_idx; } } XGBOOST_DEV_INLINE void AtomicOrByte(unsigned int *__restrict__ buffer, size_t ibyte, unsigned char b) { atomicOr(&buffer[ibyte / sizeof(unsigned int)], static_cast(b) << (ibyte % (sizeof(unsigned int)) * 8)); } template __device__ xgboost::common::Range GridStrideRange(T begin, T end) { begin += blockDim.x * blockIdx.x + threadIdx.x; xgboost::common::Range r(begin, end); r.Step(gridDim.x * blockDim.x); return r; } template __device__ xgboost::common::Range BlockStrideRange(T begin, T end) { begin += threadIdx.x; xgboost::common::Range r(begin, end); r.Step(blockDim.x); return r; } // Threadblock iterates over range, filling with value. Requires all threads in // block to be active. template __device__ void BlockFill(IterT begin, size_t n, ValueT value) { for (auto i : BlockStrideRange(static_cast(0), n)) { begin[i] = value; } } /* * Kernel launcher */ template __global__ void LaunchNKernel(size_t begin, size_t end, L lambda) { for (auto i : GridStrideRange(begin, end)) { lambda(i); } } template __global__ void LaunchNKernel(int device_idx, size_t begin, size_t end, L lambda) { for (auto i : GridStrideRange(begin, end)) { lambda(i, device_idx); } } /* \brief A wrapper around kernel launching syntax, used to guard against empty input. * * - nvcc fails to deduce template argument when kernel is a template accepting __device__ * function as argument. Hence functions like `LaunchN` cannot use this wrapper. * * - With c++ initialization list `{}` syntax, you are forced to comply with the CUDA type * specification. */ class LaunchKernel { size_t shmem_size_; hipStream_t stream_; dim3 grids_; dim3 blocks_; public: LaunchKernel(uint32_t _grids, uint32_t _blk, size_t _shmem=0, hipStream_t _s=nullptr) : grids_{_grids, 1, 1}, blocks_{_blk, 1, 1}, shmem_size_{_shmem}, stream_{_s} {} LaunchKernel(dim3 _grids, dim3 _blk, size_t _shmem=0, hipStream_t _s=nullptr) : grids_{_grids}, blocks_{_blk}, shmem_size_{_shmem}, stream_{_s} {} template void operator()(K kernel, Args... args) { if (XGBOOST_EXPECT(grids_.x * grids_.y * grids_.z == 0, false)) { LOG(DEBUG) << "Skipping empty CUDA kernel."; return; } kernel<<>>(args...); // NOLINT } }; template inline void LaunchN(size_t n, hipStream_t stream, L lambda) { if (n == 0) { return; } const int GRID_SIZE = static_cast(xgboost::common::DivRoundUp(n, ITEMS_PER_THREAD * BLOCK_THREADS)); LaunchNKernel<<>>( // NOLINT static_cast(0), n, lambda); } // Default stream version template inline void LaunchN(size_t n, L lambda) { LaunchN(n, nullptr, lambda); } template void Iota(Container array) { LaunchN(array.size(), [=] __device__(size_t i) { array[i] = i; }); } namespace detail { /** \brief Keeps track of global device memory allocations. Thread safe.*/ class MemoryLogger { // Information for a single device struct DeviceStats { size_t currently_allocated_bytes{ 0 }; size_t peak_allocated_bytes{ 0 }; size_t num_allocations{ 0 }; size_t num_deallocations{ 0 }; std::map device_allocations; void RegisterAllocation(void *ptr, size_t n) { device_allocations[ptr] = n; currently_allocated_bytes += n; peak_allocated_bytes = std::max(peak_allocated_bytes, currently_allocated_bytes); num_allocations++; CHECK_GT(num_allocations, num_deallocations); } void RegisterDeallocation(void *ptr, size_t n, int current_device) { auto itr = device_allocations.find(ptr); if (itr == device_allocations.end()) { LOG(WARNING) << "Attempting to deallocate " << n << " bytes on device " << current_device << " that was never allocated "; } num_deallocations++; CHECK_LE(num_deallocations, num_allocations); currently_allocated_bytes -= itr->second; device_allocations.erase(itr); } }; DeviceStats stats_; std::mutex mutex_; public: void RegisterAllocation(void *ptr, size_t n) { if (!xgboost::ConsoleLogger::ShouldLog(xgboost::ConsoleLogger::LV::kDebug)) { return; } std::lock_guard guard(mutex_); int current_device; safe_cuda(hipGetDevice(¤t_device)); stats_.RegisterAllocation(ptr, n); } void RegisterDeallocation(void *ptr, size_t n) { if (!xgboost::ConsoleLogger::ShouldLog(xgboost::ConsoleLogger::LV::kDebug)) { return; } std::lock_guard guard(mutex_); int current_device; safe_cuda(hipGetDevice(¤t_device)); stats_.RegisterDeallocation(ptr, n, current_device); } size_t PeakMemory() const { return stats_.peak_allocated_bytes; } size_t CurrentlyAllocatedBytes() const { return stats_.currently_allocated_bytes; } void Clear() { stats_ = DeviceStats(); } void Log() { if (!xgboost::ConsoleLogger::ShouldLog(xgboost::ConsoleLogger::LV::kDebug)) { return; } std::lock_guard guard(mutex_); int current_device; safe_cuda(hipGetDevice(¤t_device)); LOG(CONSOLE) << "======== Device " << current_device << " Memory Allocations: " << " ========"; LOG(CONSOLE) << "Peak memory usage: " << stats_.peak_allocated_bytes / 1048576 << "MiB"; LOG(CONSOLE) << "Number of allocations: " << stats_.num_allocations; } }; } // namespace detail inline detail::MemoryLogger &GlobalMemoryLogger() { static detail::MemoryLogger memory_logger; return memory_logger; } // dh::DebugSyncDevice(__FILE__, __LINE__); inline void DebugSyncDevice(std::string file="", int32_t line = -1) { if (file != "" && line != -1) { auto rank = xgboost::collective::GetRank(); LOG(DEBUG) << "R:" << rank << ": " << file << ":" << line; } safe_cuda(hipDeviceSynchronize()); safe_cuda(hipGetLastError()); } namespace detail { #if defined(XGBOOST_USE_RMM) && XGBOOST_USE_RMM == 1 template using XGBBaseDeviceAllocator = rmm::mr::thrust_allocator; #else // defined(XGBOOST_USE_RMM) && XGBOOST_USE_RMM == 1 template using XGBBaseDeviceAllocator = thrust::device_malloc_allocator; #endif // defined(XGBOOST_USE_RMM) && XGBOOST_USE_RMM == 1 inline void ThrowOOMError(std::string const& err, size_t bytes) { auto device = CurrentDevice(); auto rank = xgboost::collective::GetRank(); std::stringstream ss; ss << "Memory allocation error on worker " << rank << ": " << err << "\n" << "- Free memory: " << AvailableMemory(device) << "\n" << "- Requested memory: " << bytes << std::endl; LOG(FATAL) << ss.str(); } /** * \brief Default memory allocator, uses hipMalloc/Free and logs allocations if verbose. */ template struct XGBDefaultDeviceAllocatorImpl : XGBBaseDeviceAllocator { using SuperT = XGBBaseDeviceAllocator; using pointer = thrust::device_ptr; // NOLINT template struct rebind // NOLINT { using other = XGBDefaultDeviceAllocatorImpl; // NOLINT }; pointer allocate(size_t n) { // NOLINT pointer ptr; try { ptr = SuperT::allocate(n); dh::safe_cuda(hipGetLastError()); } catch (const std::exception &e) { ThrowOOMError(e.what(), n * sizeof(T)); } GlobalMemoryLogger().RegisterAllocation(ptr.get(), n * sizeof(T)); return ptr; } void deallocate(pointer ptr, size_t n) { // NOLINT GlobalMemoryLogger().RegisterDeallocation(ptr.get(), n * sizeof(T)); SuperT::deallocate(ptr, n); } #if defined(XGBOOST_USE_RMM) && XGBOOST_USE_RMM == 1 XGBDefaultDeviceAllocatorImpl() : SuperT(rmm::cuda_stream_default, rmm::mr::get_current_device_resource()) {} #endif // defined(XGBOOST_USE_RMM) && XGBOOST_USE_RMM == 1 }; /** * \brief Caching memory allocator, uses hipcub::CachingDeviceAllocator as a back-end, unless * RMM pool allocator is enabled. Does not initialise memory on construction. */ template struct XGBCachingDeviceAllocatorImpl : XGBBaseDeviceAllocator { using SuperT = XGBBaseDeviceAllocator; using pointer = thrust::device_ptr; // NOLINT template struct rebind // NOLINT { using other = XGBCachingDeviceAllocatorImpl; // NOLINT }; hipcub::CachingDeviceAllocator& GetGlobalCachingAllocator() { // Configure allocator with maximum cached bin size of ~1GB and no limit on // maximum cached bytes static hipcub::CachingDeviceAllocator *allocator = new hipcub::CachingDeviceAllocator(2, 9, 29); return *allocator; } pointer allocate(size_t n) { // NOLINT pointer thrust_ptr; if (use_cub_allocator_) { T* raw_ptr{nullptr}; auto errc = GetGlobalCachingAllocator().DeviceAllocate(reinterpret_cast(&raw_ptr), n * sizeof(T)); if (errc != hipSuccess) { ThrowOOMError("Caching allocator", n * sizeof(T)); } thrust_ptr = pointer(raw_ptr); } else { try { thrust_ptr = SuperT::allocate(n); dh::safe_cuda(hipGetLastError()); } catch (const std::exception &e) { ThrowOOMError(e.what(), n * sizeof(T)); } } GlobalMemoryLogger().RegisterAllocation(thrust_ptr.get(), n * sizeof(T)); return thrust_ptr; } void deallocate(pointer ptr, size_t n) { // NOLINT GlobalMemoryLogger().RegisterDeallocation(ptr.get(), n * sizeof(T)); if (use_cub_allocator_) { GetGlobalCachingAllocator().DeviceFree(ptr.get()); } else { SuperT::deallocate(ptr, n); } } #if defined(XGBOOST_USE_RMM) && XGBOOST_USE_RMM == 1 XGBCachingDeviceAllocatorImpl() : SuperT(rmm::cuda_stream_default, rmm::mr::get_current_device_resource()), use_cub_allocator_(!xgboost::GlobalConfigThreadLocalStore::Get()->use_rmm) {} #endif // defined(XGBOOST_USE_RMM) && XGBOOST_USE_RMM == 1 XGBOOST_DEVICE void construct(T *) {} // NOLINT private: bool use_cub_allocator_{true}; }; } // namespace detail // Declare xgboost allocators // Replacement of allocator with custom backend should occur here template using XGBDeviceAllocator = detail::XGBDefaultDeviceAllocatorImpl; /*! Be careful that the initialization constructor is a no-op, which means calling * `vec.resize(n)` won't initialize the memory region to 0. Instead use * `vec.resize(n, 0)`*/ template using XGBCachingDeviceAllocator = detail::XGBCachingDeviceAllocatorImpl; /** \brief Specialisation of thrust device vector using custom allocator. */ template using device_vector = thrust::device_vector>; // NOLINT template using caching_device_vector = thrust::device_vector>; // NOLINT // Faster to instantiate than caching_device_vector and invokes no synchronisation // Use this where vector functionality (e.g. resize) is not required template class TemporaryArray { public: using AllocT = XGBCachingDeviceAllocator; using value_type = T; // NOLINT explicit TemporaryArray(size_t n) : size_(n) { ptr_ = AllocT().allocate(n); } TemporaryArray(size_t n, T val) : size_(n) { ptr_ = AllocT().allocate(n); this->fill(val); } ~TemporaryArray() { AllocT().deallocate(ptr_, this->size()); } void fill(T val) // NOLINT { int device = 0; dh::safe_cuda(hipGetDevice(&device)); auto d_data = ptr_.get(); LaunchN(this->size(), [=] __device__(size_t idx) { d_data[idx] = val; }); } thrust::device_ptr data() { return ptr_; } // NOLINT size_t size() { return size_; } // NOLINT private: thrust::device_ptr ptr_; size_t size_; }; /** * \brief A double buffer, useful for algorithms like sort. */ template class DoubleBuffer { public: hipcub::DoubleBuffer buff; xgboost::common::Span a, b; DoubleBuffer() = default; template DoubleBuffer(VectorT *v1, VectorT *v2) { a = xgboost::common::Span(v1->data().get(), v1->size()); b = xgboost::common::Span(v2->data().get(), v2->size()); buff = hipcub::DoubleBuffer(a.data(), b.data()); } size_t Size() const { CHECK_EQ(a.size(), b.size()); return a.size(); } hipcub::DoubleBuffer &CubBuffer() { return buff; } T *Current() { return buff.Current(); } xgboost::common::Span CurrentSpan() { return xgboost::common::Span{buff.Current(), Size()}; } T *Other() { return buff.Alternate(); } }; /** * \brief Copies device span to std::vector. * * \tparam T Generic type parameter. * \param [in,out] dst Copy destination. * \param src Copy source. Must be device memory. */ template void CopyDeviceSpanToVector(std::vector *dst, xgboost::common::Span src) { CHECK_EQ(dst->size(), src.size()); dh::safe_cuda(hipMemcpyAsync(dst->data(), src.data(), dst->size() * sizeof(T), hipMemcpyDeviceToHost)); } /** * \brief Copies const device span to std::vector. * * \tparam T Generic type parameter. * \param [in,out] dst Copy destination. * \param src Copy source. Must be device memory. */ template void CopyDeviceSpanToVector(std::vector *dst, xgboost::common::Span src) { CHECK_EQ(dst->size(), src.size()); dh::safe_cuda(hipMemcpyAsync(dst->data(), src.data(), dst->size() * sizeof(T), hipMemcpyDeviceToHost)); } template void CopyToD(HContainer const &h, DContainer *d) { if (h.empty()) { d->clear(); return; } d->resize(h.size()); using HVT = std::remove_cv_t; using DVT = std::remove_cv_t; static_assert(std::is_same::value, "Host and device containers must have same value type."); dh::safe_cuda(hipMemcpyAsync(d->data().get(), h.data(), h.size() * sizeof(HVT), hipMemcpyHostToDevice)); } // Keep track of pinned memory allocation struct PinnedMemory { void *temp_storage{nullptr}; size_t temp_storage_bytes{0}; ~PinnedMemory() { Free(); } template xgboost::common::Span GetSpan(size_t size) { size_t num_bytes = size * sizeof(T); if (num_bytes > temp_storage_bytes) { Free(); safe_cuda(hipHostMalloc(&temp_storage, num_bytes)); temp_storage_bytes = num_bytes; } return xgboost::common::Span(static_cast(temp_storage), size); } template xgboost::common::Span GetSpan(size_t size, T init) { auto result = this->GetSpan(size); for (auto &e : result) { e = init; } return result; } void Free() { if (temp_storage != nullptr) { safe_cuda(hipHostFree(temp_storage)); } } }; /* * Utility functions */ /** * @brief Helper function to perform device-wide sum-reduction, returns to the * host * @param in the input array to be reduced * @param nVals number of elements in the input array */ template typename std::iterator_traits::value_type SumReduction(T in, int nVals) { using ValueT = typename std::iterator_traits::value_type; size_t tmpSize {0}; ValueT *dummy_out = nullptr; dh::safe_cuda(hipcub::DeviceReduce::Sum(nullptr, tmpSize, in, dummy_out, nVals)); TemporaryArray temp(tmpSize + sizeof(ValueT)); auto ptr = reinterpret_cast(temp.data().get()) + 1; dh::safe_cuda(hipcub::DeviceReduce::Sum( reinterpret_cast(ptr), tmpSize, in, reinterpret_cast(temp.data().get()), nVals)); ValueT sum; dh::safe_cuda(hipMemcpy(&sum, temp.data().get(), sizeof(ValueT), hipMemcpyDeviceToHost)); return sum; } constexpr std::pair CUDAVersion() { return std::make_pair(HIP_VERSION_MAJOR, HIP_VERSION_MINOR); } constexpr std::pair ThrustVersion() { return std::make_pair(THRUST_MAJOR_VERSION, THRUST_MINOR_VERSION); } // Whether do we have thrust 1.x with x >= minor template constexpr bool HasThrustMinorVer() { return (ThrustVersion().first == 1 && ThrustVersion().second >= minor) || ThrustVersion().first > 1; } namespace detail { template using TypedDiscardCTK114 = thrust::discard_iterator; template class TypedDiscard : public thrust::discard_iterator { public: using value_type = T; // NOLINT }; } // namespace detail template using TypedDiscard = std::conditional_t(), detail::TypedDiscardCTK114, detail::TypedDiscard>; template ::index_type> xgboost::common::Span ToSpan( VectorT &vec, IndexT offset = 0, IndexT size = std::numeric_limits::max()) { size = size == std::numeric_limits::max() ? vec.size() : size; CHECK_LE(offset + size, vec.size()); return {vec.data().get() + offset, size}; } template xgboost::common::Span ToSpan(thrust::device_vector& vec, size_t offset, size_t size) { return ToSpan(vec, offset, size); } // thrust begin, similiar to std::begin template thrust::device_ptr tbegin(xgboost::HostDeviceVector& vector) { // NOLINT return thrust::device_ptr(vector.DevicePointer()); } template thrust::device_ptr tend(xgboost::HostDeviceVector& vector) { // // NOLINT return tbegin(vector) + vector.Size(); } template thrust::device_ptr tcbegin(xgboost::HostDeviceVector const& vector) { // NOLINT return thrust::device_ptr(vector.ConstDevicePointer()); } template thrust::device_ptr tcend(xgboost::HostDeviceVector const& vector) { // NOLINT return tcbegin(vector) + vector.Size(); } template XGBOOST_DEVICE thrust::device_ptr tbegin(xgboost::common::Span& span) { // NOLINT return thrust::device_ptr(span.data()); } template XGBOOST_DEVICE thrust::device_ptr tbegin(xgboost::common::Span const& span) { // NOLINT return thrust::device_ptr(span.data()); } template XGBOOST_DEVICE thrust::device_ptr tend(xgboost::common::Span& span) { // NOLINT return tbegin(span) + span.size(); } template XGBOOST_DEVICE thrust::device_ptr tend(xgboost::common::Span const& span) { // NOLINT return tbegin(span) + span.size(); } template XGBOOST_DEVICE auto trbegin(xgboost::common::Span &span) { // NOLINT return thrust::make_reverse_iterator(span.data() + span.size()); } template XGBOOST_DEVICE auto trend(xgboost::common::Span &span) { // NOLINT return trbegin(span) + span.size(); } template XGBOOST_DEVICE thrust::device_ptr tcbegin(xgboost::common::Span const& span) { // NOLINT return thrust::device_ptr(span.data()); } template XGBOOST_DEVICE thrust::device_ptr tcend(xgboost::common::Span const& span) { // NOLINT return tcbegin(span) + span.size(); } template XGBOOST_DEVICE auto tcrbegin(xgboost::common::Span const &span) { // NOLINT return thrust::make_reverse_iterator(span.data() + span.size()); } template XGBOOST_DEVICE auto tcrend(xgboost::common::Span const &span) { // NOLINT return tcrbegin(span) + span.size(); } // This type sorts an array which is divided into multiple groups. The sorting is influenced // by the function object 'Comparator' template class SegmentSorter { private: // Items sorted within the group caching_device_vector ditems_; // Original position of the items before they are sorted descending within their groups caching_device_vector doriginal_pos_; // Segments within the original list that delineates the different groups caching_device_vector group_segments_; // Need this on the device as it is used in the kernels caching_device_vector dgroups_; // Group information on device // Where did the item that was originally present at position 'x' move to after they are sorted caching_device_vector dindexable_sorted_pos_; // Initialize everything but the segments void Init(uint32_t num_elems) { ditems_.resize(num_elems); doriginal_pos_.resize(num_elems); thrust::sequence(doriginal_pos_.begin(), doriginal_pos_.end()); } // Initialize all with group info void Init(const std::vector &groups) { uint32_t num_elems = groups.back(); this->Init(num_elems); this->CreateGroupSegments(groups); } public: // This needs to be public due to device lambda void CreateGroupSegments(const std::vector &groups) { uint32_t num_elems = groups.back(); group_segments_.resize(num_elems, 0); dgroups_ = groups; if (GetNumGroups() == 1) return; // There are no segments; hence, no need to compute them // Define the segments by assigning a group ID to each element const uint32_t *dgroups = dgroups_.data().get(); uint32_t ngroups = dgroups_.size(); auto ComputeGroupIDLambda = [=] __device__(uint32_t idx) { return thrust::upper_bound(thrust::seq, dgroups, dgroups + ngroups, idx) - dgroups - 1; }; // NOLINT thrust::transform(thrust::make_counting_iterator(static_cast(0)), thrust::make_counting_iterator(num_elems), group_segments_.begin(), ComputeGroupIDLambda); } // Accessors that returns device pointer inline uint32_t GetNumItems() const { return ditems_.size(); } inline const xgboost::common::Span GetItemsSpan() const { return { ditems_.data().get(), ditems_.size() }; } inline const xgboost::common::Span GetOriginalPositionsSpan() const { return { doriginal_pos_.data().get(), doriginal_pos_.size() }; } inline const xgboost::common::Span GetGroupSegmentsSpan() const { return { group_segments_.data().get(), group_segments_.size() }; } inline uint32_t GetNumGroups() const { return dgroups_.size() - 1; } inline const xgboost::common::Span GetGroupsSpan() const { return { dgroups_.data().get(), dgroups_.size() }; } inline const xgboost::common::Span GetIndexableSortedPositionsSpan() const { return { dindexable_sorted_pos_.data().get(), dindexable_sorted_pos_.size() }; } // Sort an array that is divided into multiple groups. The array is sorted within each group. // This version provides the group information that is on the host. // The array is sorted based on an adaptable binary predicate. By default a stateless predicate // is used. template > void SortItems(const T *ditems, uint32_t item_size, const std::vector &groups, const Comparator &comp = Comparator()) { this->Init(groups); this->SortItems(ditems, item_size, this->GetGroupSegmentsSpan(), comp); } // Sort an array that is divided into multiple groups. The array is sorted within each group. // This version provides the group information that is on the device. // The array is sorted based on an adaptable binary predicate. By default a stateless predicate // is used. template > void SortItems(const T *ditems, uint32_t item_size, const xgboost::common::Span &group_segments, const Comparator &comp = Comparator()) { this->Init(item_size); // Sort the items that are grouped. We would like to avoid using predicates to perform the sort, // as thrust resorts to using a merge sort as opposed to a much much faster radix sort // when comparators are used. Hence, the following algorithm is used. This is done so that // we can grab the appropriate related values from the original list later, after the // items are sorted. // // Here is the internal representation: // dgroups_: [ 0, 3, 5, 8, 10 ] // group_segments_: 0 0 0 | 1 1 | 2 2 2 | 3 3 // doriginal_pos_: 0 1 2 | 3 4 | 5 6 7 | 8 9 // ditems_: 1 0 1 | 2 1 | 1 3 3 | 4 4 (from original items) // // Sort the items first and make a note of the original positions in doriginal_pos_ // based on the sort // ditems_: 4 4 3 3 2 1 1 1 1 0 // doriginal_pos_: 8 9 6 7 3 0 2 4 5 1 // NOTE: This consumes space, but is much faster than some of the other approaches - sorting // in kernel, sorting using predicates etc. ditems_.assign(thrust::device_ptr(ditems), thrust::device_ptr(ditems) + item_size); // Allocator to be used by sort for managing space overhead while sorting dh::XGBCachingDeviceAllocator alloc; thrust::stable_sort_by_key(thrust::hip::par(alloc), ditems_.begin(), ditems_.end(), doriginal_pos_.begin(), comp); if (GetNumGroups() == 1) return; // The entire array is sorted, as it isn't segmented // Next, gather the segments based on the doriginal_pos_. This is to reflect the // holisitic item sort order on the segments // group_segments_c_: 3 3 2 2 1 0 0 1 2 0 // doriginal_pos_: 8 9 6 7 3 0 2 4 5 1 (stays the same) caching_device_vector group_segments_c(item_size); thrust::gather(doriginal_pos_.begin(), doriginal_pos_.end(), dh::tcbegin(group_segments), group_segments_c.begin()); // Now, sort the group segments so that you may bring the items within the group together, // in the process also noting the relative changes to the doriginal_pos_ while that happens // group_segments_c_: 0 0 0 1 1 2 2 2 3 3 // doriginal_pos_: 0 2 1 3 4 6 7 5 8 9 thrust::stable_sort_by_key(thrust::hip::par(alloc), group_segments_c.begin(), group_segments_c.end(), doriginal_pos_.begin(), thrust::less()); // Finally, gather the original items based on doriginal_pos_ to sort the input and // to store them in ditems_ // doriginal_pos_: 0 2 1 3 4 6 7 5 8 9 (stays the same) // ditems_: 1 1 0 2 1 3 3 1 4 4 (from unsorted items - ditems) thrust::gather(doriginal_pos_.begin(), doriginal_pos_.end(), thrust::device_ptr(ditems), ditems_.begin()); } // Determine where an item that was originally present at position 'x' has been relocated to // after a sort. Creation of such an index has to be explicitly requested after a sort void CreateIndexableSortedPositions() { dindexable_sorted_pos_.resize(GetNumItems()); thrust::scatter(thrust::make_counting_iterator(static_cast(0)), thrust::make_counting_iterator(GetNumItems()), // Rearrange indices... // ...based on this map dh::tcbegin(GetOriginalPositionsSpan()), dindexable_sorted_pos_.begin()); // Write results into this } }; // Atomic add function for gradients template XGBOOST_DEV_INLINE void AtomicAddGpair(OutputGradientT* dest, const InputGradientT& gpair) { auto dst_ptr = reinterpret_cast(dest); atomicAdd(dst_ptr, static_cast(gpair.GetGrad())); atomicAdd(dst_ptr + 1, static_cast(gpair.GetHess())); } // Thrust version of this function causes error on Windows template XGBOOST_DEVICE thrust::transform_iterator MakeTransformIterator( IterT iter, FuncT func) { return thrust::transform_iterator(iter, func); } template size_t XGBOOST_DEVICE SegmentId(It first, It last, size_t idx) { size_t segment_id = thrust::upper_bound(thrust::seq, first, last, idx) - 1 - first; return segment_id; } template size_t XGBOOST_DEVICE SegmentId(xgboost::common::Span segments_ptr, size_t idx) { return SegmentId(segments_ptr.cbegin(), segments_ptr.cend(), idx); } namespace detail { template struct SegmentedUniqueReduceOp { KeyOutIt key_out; __device__ Key const& operator()(Key const& key) const { auto constexpr kOne = static_cast>(1); atomicAdd(&(*(key_out + key.first)), kOne); return key; } }; } // namespace detail /* \brief Segmented unique function. Keys are pointers to segments with key_segments_last - * key_segments_first = n_segments + 1. * * \pre Input segment and output segment must not overlap. * * \param key_segments_first Beginning iterator of segments. * \param key_segments_last End iterator of segments. * \param val_first Beginning iterator of values. * \param val_last End iterator of values. * \param key_segments_out Output iterator of segments. * \param val_out Output iterator of values. * * \return Number of unique values in total. */ template size_t SegmentedUnique(const thrust::detail::execution_policy_base &exec, KeyInIt key_segments_first, KeyInIt key_segments_last, ValInIt val_first, ValInIt val_last, KeyOutIt key_segments_out, ValOutIt val_out, CompValue comp, CompKey comp_key=thrust::equal_to{}) { using Key = thrust::pair::value_type>; auto unique_key_it = dh::MakeTransformIterator( thrust::make_counting_iterator(static_cast(0)), [=] __device__(size_t i) { size_t seg = dh::SegmentId(key_segments_first, key_segments_last, i); return thrust::make_pair(seg, *(val_first + i)); }); size_t segments_len = key_segments_last - key_segments_first; thrust::fill(thrust::device, key_segments_out, key_segments_out + segments_len, 0); size_t n_inputs = std::distance(val_first, val_last); // Reduce the number of uniques elements per segment, avoid creating an intermediate // array for `reduce_by_key`. It's limited by the types that atomicAdd supports. For // example, size_t is not supported as of CUDA 10.2. auto reduce_it = thrust::make_transform_output_iterator( thrust::make_discard_iterator(), detail::SegmentedUniqueReduceOp{key_segments_out}); auto uniques_ret = thrust::unique_by_key_copy( exec, unique_key_it, unique_key_it + n_inputs, val_first, reduce_it, val_out, [=] __device__(Key const &l, Key const &r) { if (comp_key(l.first, r.first)) { // In the same segment. return comp(l.second, r.second); } return false; }); auto n_uniques = uniques_ret.second - val_out; CHECK_LE(n_uniques, n_inputs); thrust::exclusive_scan(exec, key_segments_out, key_segments_out + segments_len, key_segments_out, 0); return n_uniques; } template >::value == 7> * = nullptr> size_t SegmentedUnique(Inputs &&...inputs) { dh::XGBCachingDeviceAllocator alloc; return SegmentedUnique(thrust::hip::par(alloc), std::forward(inputs)..., thrust::equal_to{}); } /** * \brief Unique by key for many groups of data. Has same constraint as `SegmentedUnique`. * * \tparam exec thrust execution policy * \tparam key_segments_first start iter to segment pointer * \tparam key_segments_last end iter to segment pointer * \tparam key_first start iter to key for comparison * \tparam key_last end iter to key for comparison * \tparam val_first start iter to values * \tparam key_segments_out output iterator for new segment pointer * \tparam val_out output iterator for values * \tparam comp binary comparison operator */ template size_t SegmentedUniqueByKey( const thrust::detail::execution_policy_base &exec, SegInIt key_segments_first, SegInIt key_segments_last, KeyInIt key_first, KeyInIt key_last, ValInIt val_first, SegOutIt key_segments_out, ValOutIt val_out, Comp comp) { using Key = thrust::pair::value_type>; auto unique_key_it = dh::MakeTransformIterator( thrust::make_counting_iterator(static_cast(0)), [=] __device__(size_t i) { size_t seg = dh::SegmentId(key_segments_first, key_segments_last, i); return thrust::make_pair(seg, *(key_first + i)); }); size_t segments_len = key_segments_last - key_segments_first; thrust::fill(thrust::device, key_segments_out, key_segments_out + segments_len, 0); size_t n_inputs = std::distance(key_first, key_last); // Reduce the number of uniques elements per segment, avoid creating an // intermediate array for `reduce_by_key`. It's limited by the types that // atomicAdd supports. For example, size_t is not supported as of CUDA 10.2. auto reduce_it = thrust::make_transform_output_iterator( thrust::make_discard_iterator(), detail::SegmentedUniqueReduceOp{key_segments_out}); auto uniques_ret = thrust::unique_by_key_copy( exec, unique_key_it, unique_key_it + n_inputs, val_first, reduce_it, val_out, [=] __device__(Key const &l, Key const &r) { if (l.first == r.first) { // In the same segment. return comp(thrust::get<1>(l), thrust::get<1>(r)); } return false; }); auto n_uniques = uniques_ret.second - val_out; CHECK_LE(n_uniques, n_inputs); thrust::exclusive_scan(exec, key_segments_out, key_segments_out + segments_len, key_segments_out, 0); return n_uniques; } template auto Reduce(Policy policy, InputIt first, InputIt second, Init init, Func reduce_op) { size_t constexpr kLimit = std::numeric_limits::max() / 2; size_t size = std::distance(first, second); using Ty = std::remove_cv_t; Ty aggregate = init; for (size_t offset = 0; offset < size; offset += kLimit) { auto begin_it = first + offset; auto end_it = first + std::min(offset + kLimit, size); size_t batch_size = std::distance(begin_it, end_it); CHECK_LE(batch_size, size); auto ret = thrust::reduce(policy, begin_it, end_it, init, reduce_op); aggregate = reduce_op(aggregate, ret); } return aggregate; } // wrapper to avoid integer `num_items`. template void InclusiveScan(InputIteratorT d_in, OutputIteratorT d_out, ScanOpT scan_op, OffsetT num_items) { size_t bytes = 0; safe_cuda((rocprim::inclusive_scan(nullptr, bytes, d_in, d_out, (size_t) num_items, scan_op))); TemporaryArray storage(bytes); safe_cuda((rocprim::inclusive_scan(storage.data().get(), bytes, d_in, d_out, (size_t) num_items, scan_op))); } template void CopyIf(InIt in_first, InIt in_second, OutIt out_first, Predicate pred) { // We loop over batches because thrust::copy_if can't deal with sizes > 2^31 // See thrust issue #1302, XGBoost #6822 size_t constexpr kMaxCopySize = std::numeric_limits::max() / 2; size_t length = std::distance(in_first, in_second); XGBCachingDeviceAllocator alloc; for (size_t offset = 0; offset < length; offset += kMaxCopySize) { auto begin_input = in_first + offset; auto end_input = in_first + std::min(offset + kMaxCopySize, length); out_first = thrust::copy_if(thrust::hip::par(alloc), begin_input, end_input, out_first, pred); } } template void InclusiveSum(InputIteratorT d_in, OutputIteratorT d_out, OffsetT num_items) { InclusiveScan(d_in, d_out, hipcub::Sum(), num_items); } template void ArgSort(xgboost::common::Span keys, xgboost::common::Span sorted_idx) { size_t bytes = 0; Iota(sorted_idx); using KeyT = typename decltype(keys)::value_type; using ValueT = std::remove_const_t; TemporaryArray out(keys.size()); TemporaryArray sorted_idx_out(sorted_idx.size()); // track https://github.com/NVIDIA/cub/pull/340 for 64bit length support using OffsetT = std::conditional_t; CHECK_LE(sorted_idx.size(), std::numeric_limits::max()); if (accending) { void *d_temp_storage = nullptr; safe_cuda((rocprim::radix_sort_pairs(d_temp_storage, bytes, keys.data(), out.data().get(), sorted_idx.data(), sorted_idx_out.data().get(), sorted_idx.size(), 0, sizeof(KeyT) * 8))); TemporaryArray storage(bytes); d_temp_storage = storage.data().get(); safe_cuda((rocprim::radix_sort_pairs(d_temp_storage, bytes, keys.data(), out.data().get(), sorted_idx.data(), sorted_idx_out.data().get(), sorted_idx.size(), 0, sizeof(KeyT) * 8))); } else { void *d_temp_storage = nullptr; safe_cuda((rocprim::radix_sort_pairs_desc(d_temp_storage, bytes, keys.data(), out.data().get(), sorted_idx.data(), sorted_idx_out.data().get(), sorted_idx.size(), 0, sizeof(KeyT) * 8))); TemporaryArray storage(bytes); d_temp_storage = storage.data().get(); safe_cuda((rocprim::radix_sort_pairs_desc(d_temp_storage, bytes, keys.data(), out.data().get(), sorted_idx.data(), sorted_idx_out.data().get(), sorted_idx.size(), 0, sizeof(KeyT) * 8))); } safe_cuda(hipMemcpyAsync(sorted_idx.data(), sorted_idx_out.data().get(), sorted_idx.size_bytes(), hipMemcpyDeviceToDevice)); } class CUDAStreamView; class CUDAEvent { hipEvent_t event_{nullptr}; public: CUDAEvent() { dh::safe_cuda(hipEventCreateWithFlags(&event_, hipEventDisableTiming)); } ~CUDAEvent() { if (event_) { dh::safe_cuda(hipEventDestroy(event_)); } } CUDAEvent(CUDAEvent const &that) = delete; CUDAEvent &operator=(CUDAEvent const &that) = delete; inline void Record(CUDAStreamView stream); // NOLINT operator hipEvent_t() const { return event_; } // NOLINT }; class CUDAStreamView { hipStream_t stream_{nullptr}; public: explicit CUDAStreamView(hipStream_t s) : stream_{s} {} void Wait(CUDAEvent const &e) { dh::safe_cuda(hipStreamWaitEvent(stream_, hipEvent_t{e}, hipEventDefault)); } operator hipStream_t() const { // NOLINT return stream_; } void Sync() { dh::safe_cuda(hipStreamSynchronize(stream_)); } }; inline void CUDAEvent::Record(CUDAStreamView stream) { // NOLINT dh::safe_cuda(hipEventRecord(event_, hipStream_t{stream})); } inline CUDAStreamView DefaultStream() { return CUDAStreamView{hipStreamDefault}; } class CUDAStream { hipStream_t stream_; public: CUDAStream() { dh::safe_cuda(hipStreamCreateWithFlags(&stream_, hipStreamNonBlocking)); } ~CUDAStream() { dh::safe_cuda(hipStreamDestroy(stream_)); } CUDAStreamView View() const { return CUDAStreamView{stream_}; } void Sync() { this->View().Sync(); } }; // Force nvcc to load data as constant template class LDGIterator { using DeviceWordT = typename hipcub::UnitWord::DeviceWord; static constexpr std::size_t kNumWords = sizeof(T) / sizeof(DeviceWordT); const T *ptr_; public: XGBOOST_DEVICE explicit LDGIterator(const T *ptr) : ptr_(ptr) {} __device__ T operator[](std::size_t idx) const { DeviceWordT tmp[kNumWords]; static_assert(sizeof(tmp) == sizeof(T), "Expect sizes to be equal."); for (int i = 0; i < kNumWords; i++) { tmp[i] = __ldg(reinterpret_cast(ptr_ + idx) + i); } return *reinterpret_cast(tmp); } }; } // namespace dh