// Copyright by Contributors #include #include "../helpers.h" #include "dmlc/filesystem.h" #include "xgboost/json_io.h" #include "xgboost/tree_model.h" #include "../../../src/common/bitfield.h" namespace xgboost { #if DMLC_IO_NO_ENDIAN_SWAP // skip on big-endian machines // Manually construct tree in binary format // Do not use structs in case they change // We want to preserve backwards compatibility TEST(Tree, Load) { dmlc::TemporaryDirectory tempdir; const std::string tmp_file = tempdir.path + "/tree.model"; std::unique_ptr fo(dmlc::Stream::Create(tmp_file.c_str(), "w")); // Write params EXPECT_EQ(sizeof(TreeParam), (31 + 6) * sizeof(int)); int num_roots = 1; int num_nodes = 2; int num_deleted = 0; int max_depth = 1; int num_feature = 0; int size_leaf_vector = 0; int reserved[31]; fo->Write(&num_roots, sizeof(int)); fo->Write(&num_nodes, sizeof(int)); fo->Write(&num_deleted, sizeof(int)); fo->Write(&max_depth, sizeof(int)); fo->Write(&num_feature, sizeof(int)); fo->Write(&size_leaf_vector, sizeof(int)); fo->Write(reserved, sizeof(int) * 31); // Write 2 nodes EXPECT_EQ(sizeof(RegTree::Node), 3 * sizeof(int) + 1 * sizeof(unsigned) + sizeof(float)); int parent = -1; int cleft = 1; int cright = -1; unsigned sindex = 5; float split_or_weight = 0.5; fo->Write(&parent, sizeof(int)); fo->Write(&cleft, sizeof(int)); fo->Write(&cright, sizeof(int)); fo->Write(&sindex, sizeof(unsigned)); fo->Write(&split_or_weight, sizeof(float)); parent = 0; cleft = -1; cright = -1; sindex = 2; split_or_weight = 0.1; fo->Write(&parent, sizeof(int)); fo->Write(&cleft, sizeof(int)); fo->Write(&cright, sizeof(int)); fo->Write(&sindex, sizeof(unsigned)); fo->Write(&split_or_weight, sizeof(float)); // Write 2x node stats EXPECT_EQ(sizeof(RTreeNodeStat), 3 * sizeof(float) + sizeof(int)); bst_float loss_chg = 5.0; bst_float sum_hess = 1.0; bst_float base_weight = 3.0; int leaf_child_cnt = 0; fo->Write(&loss_chg, sizeof(float)); fo->Write(&sum_hess, sizeof(float)); fo->Write(&base_weight, sizeof(float)); fo->Write(&leaf_child_cnt, sizeof(int)); loss_chg = 50.0; sum_hess = 10.0; base_weight = 30.0; leaf_child_cnt = 0; fo->Write(&loss_chg, sizeof(float)); fo->Write(&sum_hess, sizeof(float)); fo->Write(&base_weight, sizeof(float)); fo->Write(&leaf_child_cnt, sizeof(int)); fo.reset(); std::unique_ptr fi(dmlc::Stream::Create(tmp_file.c_str(), "r")); xgboost::RegTree tree; tree.Load(fi.get()); EXPECT_EQ(tree.GetDepth(1), 1); EXPECT_EQ(tree[0].SplitCond(), 0.5f); EXPECT_EQ(tree[0].SplitIndex(), 5ul); EXPECT_EQ(tree[1].LeafValue(), 0.1f); EXPECT_TRUE(tree[1].IsLeaf()); } #endif // DMLC_IO_NO_ENDIAN_SWAP TEST(Tree, AllocateNode) { RegTree tree; tree.ExpandNode(0, 0, 0.0f, false, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, /*left_sum=*/0.0f, /*right_sum=*/0.0f); tree.CollapseToLeaf(0, 0); ASSERT_EQ(tree.NumExtraNodes(), 0); tree.ExpandNode(0, 0, 0.0f, false, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, /*left_sum=*/0.0f, /*right_sum=*/0.0f); ASSERT_EQ(tree.NumExtraNodes(), 2); auto& nodes = tree.GetNodes(); ASSERT_FALSE(nodes.at(1).IsDeleted()); ASSERT_TRUE(nodes.at(1).IsLeaf()); ASSERT_TRUE(nodes.at(2).IsLeaf()); } TEST(Tree, ExpandCategoricalFeature) { { RegTree tree; tree.ExpandCategorical(0, 0, {}, true, 1.0, 2.0, 3.0, 11.0, 2.0, /*left_sum=*/3.0, /*right_sum=*/4.0); ASSERT_EQ(tree.GetNodes().size(), 3ul); ASSERT_EQ(tree.GetNumLeaves(), 2); ASSERT_EQ(tree.GetSplitTypes().size(), 3ul); ASSERT_EQ(tree.GetSplitTypes()[0], FeatureType::kCategorical); ASSERT_EQ(tree.GetSplitTypes()[1], FeatureType::kNumerical); ASSERT_EQ(tree.GetSplitTypes()[2], FeatureType::kNumerical); ASSERT_EQ(tree.GetSplitCategories().size(), 0ul); ASSERT_TRUE(std::isnan(tree[0].SplitCond())); } { RegTree tree; bst_cat_t cat = 33; std::vector split_cats(LBitField32::ComputeStorageSize(cat+1)); LBitField32 bitset {split_cats}; bitset.Set(cat); tree.ExpandCategorical(0, 0, split_cats, true, 1.0, 2.0, 3.0, 11.0, 2.0, /*left_sum=*/3.0, /*right_sum=*/4.0); auto categories = tree.GetSplitCategories(); auto segments = tree.GetSplitCategoriesPtr(); auto got = categories.subspan(segments[0].beg, segments[0].size); ASSERT_TRUE(std::equal(got.cbegin(), got.cend(), split_cats.cbegin())); Json out{Object()}; tree.SaveModel(&out); RegTree loaded_tree; loaded_tree.LoadModel(out); auto const& cat_ptr = loaded_tree.GetSplitCategoriesPtr(); ASSERT_EQ(cat_ptr.size(), 3ul); ASSERT_EQ(cat_ptr[0].beg, 0ul); ASSERT_EQ(cat_ptr[0].size, 2ul); auto loaded_categories = loaded_tree.GetSplitCategories(); auto loaded_root = loaded_categories.subspan(cat_ptr[0].beg, cat_ptr[0].size); ASSERT_TRUE(std::equal(loaded_root.begin(), loaded_root.end(), split_cats.begin())); } } namespace { RegTree ConstructTree() { RegTree tree; tree.ExpandNode( /*nid=*/0, /*split_index=*/0, /*split_value=*/0.0f, /*default_left=*/true, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, /*left_sum=*/0.0f, /*right_sum=*/0.0f); auto left = tree[0].LeftChild(); auto right = tree[0].RightChild(); tree.ExpandNode( /*nid=*/left, /*split_index=*/1, /*split_value=*/1.0f, /*default_left=*/false, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, /*left_sum=*/0.0f, /*right_sum=*/0.0f); tree.ExpandNode( /*nid=*/right, /*split_index=*/2, /*split_value=*/2.0f, /*default_left=*/false, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, /*left_sum=*/0.0f, /*right_sum=*/0.0f); return tree; } } // anonymous namespace TEST(Tree, DumpJson) { auto tree = ConstructTree(); FeatureMap fmap; auto str = tree.DumpModel(fmap, true, "json"); size_t n_leaves = 0; size_t iter = 0; while ((iter = str.find("leaf", iter + 1)) != std::string::npos) { n_leaves++; } ASSERT_EQ(n_leaves, 4ul); size_t n_conditions = 0; iter = 0; while ((iter = str.find("split_condition", iter + 1)) != std::string::npos) { n_conditions++; } ASSERT_EQ(n_conditions, 3ul); fmap.PushBack(0, "feat_0", "i"); fmap.PushBack(1, "feat_1", "q"); fmap.PushBack(2, "feat_2", "int"); str = tree.DumpModel(fmap, true, "json"); ASSERT_NE(str.find(R"("split": "feat_0")"), std::string::npos); ASSERT_NE(str.find(R"("split": "feat_1")"), std::string::npos); ASSERT_NE(str.find(R"("split": "feat_2")"), std::string::npos); str = tree.DumpModel(fmap, false, "json"); ASSERT_EQ(str.find("cover"), std::string::npos); auto j_tree = Json::Load({str.c_str(), str.size()}); ASSERT_EQ(get(j_tree["children"]).size(), 2ul); } TEST(Tree, DumpText) { auto tree = ConstructTree(); FeatureMap fmap; auto str = tree.DumpModel(fmap, true, "text"); size_t n_leaves = 0; size_t iter = 0; while ((iter = str.find("leaf", iter + 1)) != std::string::npos) { n_leaves++; } ASSERT_EQ(n_leaves, 4ul); iter = 0; size_t n_conditions = 0; while ((iter = str.find("gain", iter + 1)) != std::string::npos) { n_conditions++; } ASSERT_EQ(n_conditions, 3ul); ASSERT_NE(str.find("[f0<0]"), std::string::npos); ASSERT_NE(str.find("[f1<1]"), std::string::npos); ASSERT_NE(str.find("[f2<2]"), std::string::npos); fmap.PushBack(0, "feat_0", "i"); fmap.PushBack(1, "feat_1", "q"); fmap.PushBack(2, "feat_2", "int"); str = tree.DumpModel(fmap, true, "text"); ASSERT_NE(str.find("[feat_0]"), std::string::npos); ASSERT_NE(str.find("[feat_1<1]"), std::string::npos); ASSERT_NE(str.find("[feat_2<2]"), std::string::npos); str = tree.DumpModel(fmap, false, "text"); ASSERT_EQ(str.find("cover"), std::string::npos); } TEST(Tree, DumpDot) { auto tree = ConstructTree(); FeatureMap fmap; auto str = tree.DumpModel(fmap, true, "dot"); size_t n_leaves = 0; size_t iter = 0; while ((iter = str.find("leaf", iter + 1)) != std::string::npos) { n_leaves++; } ASSERT_EQ(n_leaves, 4ul); size_t n_edges = 0; iter = 0; while ((iter = str.find("->", iter + 1)) != std::string::npos) { n_edges++; } ASSERT_EQ(n_edges, 6ul); fmap.PushBack(0, "feat_0", "i"); fmap.PushBack(1, "feat_1", "q"); fmap.PushBack(2, "feat_2", "int"); str = tree.DumpModel(fmap, true, "dot"); ASSERT_NE(str.find(R"("feat_0")"), std::string::npos); ASSERT_NE(str.find(R"(feat_1<1)"), std::string::npos); ASSERT_NE(str.find(R"(feat_2<2)"), std::string::npos); str = tree.DumpModel(fmap, true, R"(dot:{"graph_attrs": {"bgcolor": "#FFFF00"}})"); ASSERT_NE(str.find(R"(graph [ bgcolor="#FFFF00" ])"), std::string::npos); } TEST(Tree, JsonIO) { RegTree tree; tree.ExpandNode(0, 0, 0.0f, false, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, /*left_sum=*/0.0f, /*right_sum=*/0.0f); Json j_tree{Object()}; tree.SaveModel(&j_tree); auto tparam = j_tree["tree_param"]; ASSERT_EQ(get(tparam["num_feature"]), "0"); ASSERT_EQ(get(tparam["num_nodes"]), "3"); ASSERT_EQ(get(tparam["size_leaf_vector"]), "0"); ASSERT_EQ(get(j_tree["left_children"]).size(), 3ul); ASSERT_EQ(get(j_tree["right_children"]).size(), 3ul); ASSERT_EQ(get(j_tree["parents"]).size(), 3ul); ASSERT_EQ(get(j_tree["split_indices"]).size(), 3ul); ASSERT_EQ(get(j_tree["split_conditions"]).size(), 3ul); ASSERT_EQ(get(j_tree["default_left"]).size(), 3ul); RegTree loaded_tree; loaded_tree.LoadModel(j_tree); ASSERT_EQ(loaded_tree.param.num_nodes, 3); ASSERT_TRUE(loaded_tree == tree); auto left = tree[0].LeftChild(); auto right = tree[0].RightChild(); tree.ExpandNode(left, 0, 0.0f, false, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, /*left_sum=*/0.0f, /*right_sum=*/0.0f); tree.ExpandNode(right, 0, 0.0f, false, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, /*left_sum=*/0.0f, /*right_sum=*/0.0f); tree.SaveModel(&j_tree); tree.ChangeToLeaf(1, 1.0f); ASSERT_EQ(tree[1].LeftChild(), -1); ASSERT_EQ(tree[1].RightChild(), -1); tree.SaveModel(&j_tree); loaded_tree.LoadModel(j_tree); ASSERT_EQ(loaded_tree[1].LeftChild(), -1); ASSERT_EQ(loaded_tree[1].RightChild(), -1); ASSERT_TRUE(tree.Equal(loaded_tree)); } } // namespace xgboost