require(xgboost) data(agaricus.train) data(agaricus.test) trainX = agaricus.train$data trainY = agaricus.train$label testX = agaricus.test$data testY = agaricus.test$label dtrain <- xgb.DMatrix(trainX, label=trainY) dtest <- xgb.DMatrix(testX, label=testY) param <- list(max_depth=2,eta=1,silent=1,objective='binary:logistic') watchlist <- list(eval = dtest, train = dtrain) num_round = 2 bst = xgb.train(param, dtrain, num_round, watchlist) cat('start testing prediction from first n trees\n') labels <- getinfo(dtest,'label') ypred1 = predict(bst, dtest, ntreelimit=1) ypred2 = predict(bst, dtest) cat('error of ypred1=', mean(as.numeric(ypred1>0.5)!=labels),'\n') cat('error of ypred2=', mean(as.numeric(ypred2>0.5)!=labels),'\n')