require(xgboost) data(agaricus.train) data(agaricus.test) trainX = agaricus.train$data trainY = agaricus.train$label testX = agaricus.test$data testY = agaricus.test$label dtrain <- xgb.DMatrix(trainX, label=trainY) dtest <- xgb.DMatrix(testX, label=testY) watchlist <- list(eval = dtest, train = dtrain) print('start running example to start from a initial prediction\n') param <- list(max_depth=2,eta=1,silent=1,objective='binary:logistic') bst <- xgb.train( param, dtrain, 1, watchlist ) ptrain <- predict(bst, dtrain, outputmargin=TRUE) ptest <- predict(bst, dtest, outputmargin=TRUE) # dtrain.set_base_margin(ptrain) # dtest.set_base_margin(ptest) cat('this is result of running from initial prediction\n') bst <- xgb.train( param, dtrain, 1, watchlist )