context('Test helper functions') require(xgboost) require(data.table) require(Matrix) require(vcd) set.seed(1994) data(Arthritis) data(agaricus.train, package='xgboost') df <- data.table(Arthritis, keep.rownames = F) df[,AgeDiscret := as.factor(round(Age / 10,0))] df[,AgeCat := as.factor(ifelse(Age > 30, "Old", "Young"))] df[,ID := NULL] sparse_matrix <- sparse.model.matrix(Improved~.-1, data = df) output_vector <- df[,Y := 0][Improved == "Marked",Y := 1][,Y] bst <- xgboost(data = sparse_matrix, label = output_vector, max.depth = 9, eta = 1, nthread = 2, nround = 10,objective = "binary:logistic") test_that("xgb.dump works", { capture.output(print(xgb.dump(bst))) expect_true(xgb.dump(bst, 'xgb.model.dump', with.stats = T)) }) test_that("xgb.importance works", { importance <- xgb.importance(feature_names = sparse_matrix@Dimnames[[2]], model = bst) expect_equal(dim(importance), c(7, 4)) expect_equal(colnames(importance), c("Feature", "Gain", "Cover", "Frequency")) }) test_that("xgb.plot.tree works", { xgb.plot.tree(feature_names = agaricus.train$data@Dimnames[[2]], model = bst) }) test_that("xgb.plot.deepness works", { xgb.plot.deepness(model = bst) }) test_that("xgb.plot.multi.trees works", { xgb.plot.multi.trees(model = bst, feature_names = agaricus.train$data@Dimnames[[2]], 3) })