/*! * Copyright 2017 by Contributors * \file column_matrix.h * \brief Utility for fast column-wise access * \author Philip Cho */ #ifndef XGBOOST_COMMON_COLUMN_MATRIX_H_ #define XGBOOST_COMMON_COLUMN_MATRIX_H_ #include #include #include "hist_util.h" namespace xgboost { namespace common { /*! \brief column type */ enum ColumnType { kDenseColumn, kSparseColumn }; /*! \brief a column storage, to be used with ApplySplit. Note that each bin id is stored as index[i] + index_base. */ class Column { public: Column(ColumnType type, const uint32_t* index, uint32_t index_base, const size_t* row_ind, size_t len) : type_(type), index_(index), index_base_(index_base), row_ind_(row_ind), len_(len) {} size_t Size() const { return len_; } uint32_t GetGlobalBinIdx(size_t idx) const { return index_base_ + index_[idx]; } uint32_t GetFeatureBinIdx(size_t idx) const { return index_[idx]; } // column.GetFeatureBinIdx(idx) + column.GetBaseIdx(idx) == // column.GetGlobalBinIdx(idx) uint32_t GetBaseIdx() const { return index_base_; } ColumnType GetType() const { return type_; } size_t GetRowIdx(size_t idx) const { // clang-tidy worries that row_ind_ might be a nullptr, which is possible, // but low level structure is not safe anyway. return type_ == ColumnType::kDenseColumn ? idx : row_ind_[idx]; // NOLINT } bool IsMissing(size_t idx) const { return index_[idx] == std::numeric_limits::max(); } const size_t* GetRowData() const { return row_ind_; } private: ColumnType type_; const uint32_t* index_; uint32_t index_base_; const size_t* row_ind_; const size_t len_; }; /*! \brief a collection of columns, with support for construction from GHistIndexMatrix. */ class ColumnMatrix { public: // get number of features inline bst_uint GetNumFeature() const { return static_cast(type_.size()); } // construct column matrix from GHistIndexMatrix inline void Init(const GHistIndexMatrix& gmat, double sparse_threshold) { const int32_t nfeature = static_cast(gmat.cut.row_ptr.size() - 1); const size_t nrow = gmat.row_ptr.size() - 1; // identify type of each column feature_counts_.resize(nfeature); type_.resize(nfeature); std::fill(feature_counts_.begin(), feature_counts_.end(), 0); uint32_t max_val = std::numeric_limits::max(); for (bst_uint fid = 0; fid < nfeature; ++fid) { CHECK_LE(gmat.cut.row_ptr[fid + 1] - gmat.cut.row_ptr[fid], max_val); } gmat.GetFeatureCounts(&feature_counts_[0]); // classify features for (int32_t fid = 0; fid < nfeature; ++fid) { if (static_cast(feature_counts_[fid]) < sparse_threshold * nrow) { type_[fid] = kSparseColumn; } else { type_[fid] = kDenseColumn; } } // want to compute storage boundary for each feature // using variants of prefix sum scan boundary_.resize(nfeature); size_t accum_index_ = 0; size_t accum_row_ind_ = 0; for (int32_t fid = 0; fid < nfeature; ++fid) { boundary_[fid].index_begin = accum_index_; boundary_[fid].row_ind_begin = accum_row_ind_; if (type_[fid] == kDenseColumn) { accum_index_ += static_cast(nrow); accum_row_ind_ += static_cast(nrow); } else { accum_index_ += feature_counts_[fid]; accum_row_ind_ += feature_counts_[fid]; } boundary_[fid].index_end = accum_index_; boundary_[fid].row_ind_end = accum_row_ind_; } index_.resize(boundary_[nfeature - 1].index_end); row_ind_.resize(boundary_[nfeature - 1].row_ind_end); // store least bin id for each feature index_base_.resize(nfeature); for (bst_uint fid = 0; fid < nfeature; ++fid) { index_base_[fid] = gmat.cut.row_ptr[fid]; } // pre-fill index_ for dense columns #pragma omp parallel for for (int32_t fid = 0; fid < nfeature; ++fid) { if (type_[fid] == kDenseColumn) { const size_t ibegin = boundary_[fid].index_begin; uint32_t* begin = &index_[ibegin]; uint32_t* end = begin + nrow; std::fill(begin, end, std::numeric_limits::max()); // max() indicates missing values } } // loop over all rows and fill column entries // num_nonzeros[fid] = how many nonzeros have this feature accumulated so far? std::vector num_nonzeros; num_nonzeros.resize(nfeature); std::fill(num_nonzeros.begin(), num_nonzeros.end(), 0); for (size_t rid = 0; rid < nrow; ++rid) { const size_t ibegin = gmat.row_ptr[rid]; const size_t iend = gmat.row_ptr[rid + 1]; size_t fid = 0; for (size_t i = ibegin; i < iend; ++i) { const uint32_t bin_id = gmat.index[i]; while (bin_id >= gmat.cut.row_ptr[fid + 1]) { ++fid; } if (type_[fid] == kDenseColumn) { uint32_t* begin = &index_[boundary_[fid].index_begin]; begin[rid] = bin_id - index_base_[fid]; } else { uint32_t* begin = &index_[boundary_[fid].index_begin]; begin[num_nonzeros[fid]] = bin_id - index_base_[fid]; row_ind_[boundary_[fid].row_ind_begin + num_nonzeros[fid]] = rid; ++num_nonzeros[fid]; } } } } /* Fetch an individual column. This code should be used with XGBOOST_TYPE_SWITCH to determine type of bin id's */ inline Column GetColumn(unsigned fid) const { Column c(type_[fid], &index_[boundary_[fid].index_begin], index_base_[fid], (type_[fid] == ColumnType::kSparseColumn ? &row_ind_[boundary_[fid].row_ind_begin] : nullptr), boundary_[fid].index_end - boundary_[fid].index_begin); return c; } private: struct ColumnBoundary { // indicate where each column's index and row_ind is stored. // index_begin and index_end are logical offsets, so they should be converted to // actual offsets by scaling with packing_factor_ size_t index_begin; size_t index_end; size_t row_ind_begin; size_t row_ind_end; }; std::vector feature_counts_; std::vector type_; SimpleArray index_; // index_: may store smaller integers; needs padding SimpleArray row_ind_; std::vector boundary_; // index_base_[fid]: least bin id for feature fid std::vector index_base_; }; } // namespace common } // namespace xgboost #endif // XGBOOST_COMMON_COLUMN_MATRIX_H_