/*! * Copyright 2020-2022 by XGBoost contributors */ #include #include "../../../../src/tree/gpu_hist/evaluate_splits.cuh" #include "../../helpers.h" #include "../../histogram_helpers.h" #include "../test_evaluate_splits.h" // TestPartitionBasedSplit #include namespace xgboost { namespace tree { namespace { auto ZeroParam() { auto args = Args{{"min_child_weight", "0"}, {"lambda", "0"}}; TrainParam tparam; tparam.UpdateAllowUnknown(args); return tparam; } } // anonymous namespace inline GradientQuantiser DummyRoundingFactor() { thrust::device_vector gpair(1); gpair[0] = {1000.f, 1000.f}; // Tests should not exceed sum of 1000 return GradientQuantiser(dh::ToSpan(gpair)); } thrust::device_vector ConvertToInteger(std::vector x) { auto r = DummyRoundingFactor(); std::vector y(x.size()); for (std::size_t i = 0; i < x.size(); i++) { y[i] = r.ToFixedPoint(GradientPair(x[i])); } return y; } TEST_F(TestCategoricalSplitWithMissing, GPUHistEvaluator) { thrust::device_vector feature_set = std::vector{0}; GPUTrainingParam param{param_}; cuts_.cut_ptrs_.SetDevice(0); cuts_.cut_values_.SetDevice(0); cuts_.min_vals_.SetDevice(0); thrust::device_vector feature_histogram{ConvertToInteger(feature_histogram_)}; dh::device_vector feature_types(feature_set.size(), FeatureType::kCategorical); auto d_feature_types = dh::ToSpan(feature_types); auto quantiser = DummyRoundingFactor(); EvaluateSplitInputs input{1, 0, quantiser.ToFixedPoint(parent_sum_), dh::ToSpan(feature_set), dh::ToSpan(feature_histogram)}; EvaluateSplitSharedInputs shared_inputs{param, quantiser, d_feature_types, cuts_.cut_ptrs_.ConstDeviceSpan(), cuts_.cut_values_.ConstDeviceSpan(), cuts_.min_vals_.ConstDeviceSpan(), false}; GPUHistEvaluator evaluator{param_, static_cast(feature_set.size()), 0}; evaluator.Reset(cuts_, dh::ToSpan(feature_types), feature_set.size(), param_, 0); DeviceSplitCandidate result = evaluator.EvaluateSingleSplit(input, shared_inputs).split; ASSERT_EQ(result.thresh, 1); this->CheckResult(result.loss_chg, result.findex, result.fvalue, result.is_cat, result.dir == kLeftDir, quantiser.ToFloatingPoint(result.left_sum), quantiser.ToFloatingPoint(result.right_sum)); } TEST(GpuHist, PartitionBasic) { TrainParam tparam = ZeroParam(); tparam.max_cat_to_onehot = 0; GPUTrainingParam param{tparam}; common::HistogramCuts cuts; cuts.cut_values_.HostVector() = std::vector{0.0, 1.0, 2.0}; cuts.cut_ptrs_.HostVector() = std::vector{0, 3}; cuts.min_vals_.HostVector() = std::vector{0.0}; cuts.cut_ptrs_.SetDevice(0); cuts.cut_values_.SetDevice(0); cuts.min_vals_.SetDevice(0); thrust::device_vector feature_set = std::vector{0}; thrust::device_vector monotonic_constraints(feature_set.size(), 0); dh::device_vector feature_types(feature_set.size(), FeatureType::kCategorical); common::Span d_feature_types; auto max_cat = *std::max_element(cuts.cut_values_.HostVector().begin(), cuts.cut_values_.HostVector().end()); cuts.SetCategorical(true, max_cat); d_feature_types = dh::ToSpan(feature_types); auto quantiser = DummyRoundingFactor(); EvaluateSplitSharedInputs shared_inputs{ param, quantiser, d_feature_types, cuts.cut_ptrs_.ConstDeviceSpan(), cuts.cut_values_.ConstDeviceSpan(), cuts.min_vals_.ConstDeviceSpan(), false, }; GPUHistEvaluator evaluator{tparam, static_cast(feature_set.size()), 0}; evaluator.Reset(cuts, dh::ToSpan(feature_types), feature_set.size(), tparam, 0); { // -1.0s go right // -3.0s go left auto parent_sum = quantiser.ToFixedPoint(GradientPairPrecise{-5.0, 3.0}); auto feature_histogram = ConvertToInteger({{-1.0, 1.0}, {-1.0, 1.0}, {-3.0, 1.0}}); EvaluateSplitInputs input{0, 0, parent_sum, dh::ToSpan(feature_set), dh::ToSpan(feature_histogram)}; DeviceSplitCandidate result = evaluator.EvaluateSingleSplit(input, shared_inputs).split; auto cats = std::bitset<32>(evaluator.GetHostNodeCats(input.nidx)[0]); EXPECT_EQ(result.dir, kLeftDir); EXPECT_EQ(cats, std::bitset<32>("11000000000000000000000000000000")); EXPECT_EQ(result.left_sum + result.right_sum, parent_sum); } { // -1.0s go right // -3.0s go left auto parent_sum = quantiser.ToFixedPoint(GradientPairPrecise{-7.0, 3.0}); auto feature_histogram = ConvertToInteger({{-1.0, 1.0}, {-3.0, 1.0}, {-3.0, 1.0}}); EvaluateSplitInputs input{1, 0, parent_sum, dh::ToSpan(feature_set), dh::ToSpan(feature_histogram)}; DeviceSplitCandidate result = evaluator.EvaluateSingleSplit(input, shared_inputs).split; auto cats = std::bitset<32>(evaluator.GetHostNodeCats(input.nidx)[0]); EXPECT_EQ(result.dir, kLeftDir); EXPECT_EQ(cats, std::bitset<32>("10000000000000000000000000000000")); EXPECT_EQ(result.left_sum + result.right_sum, parent_sum); } { // All -1.0, gain from splitting should be 0.0 auto parent_sum = quantiser.ToFixedPoint(GradientPairPrecise{-3.0, 3.0}); auto feature_histogram = ConvertToInteger({{-1.0, 1.0}, {-1.0, 1.0}, {-1.0, 1.0}}); EvaluateSplitInputs input{2, 0, parent_sum, dh::ToSpan(feature_set), dh::ToSpan(feature_histogram)}; DeviceSplitCandidate result = evaluator.EvaluateSingleSplit(input, shared_inputs).split; EXPECT_EQ(result.dir, kLeftDir); EXPECT_FLOAT_EQ(result.loss_chg, 0.0f); EXPECT_EQ(result.left_sum + result.right_sum, parent_sum); } // With 3.0/3.0 missing values // Forward, first 2 categories are selected, while the last one go to left along with missing value { auto parent_sum = quantiser.ToFixedPoint(GradientPairPrecise{0.0, 6.0}); auto feature_histogram = ConvertToInteger({{-1.0, 1.0}, {-1.0, 1.0}, {-1.0, 1.0}}); EvaluateSplitInputs input{3, 0, parent_sum, dh::ToSpan(feature_set), dh::ToSpan(feature_histogram)}; DeviceSplitCandidate result = evaluator.EvaluateSingleSplit(input, shared_inputs).split; auto cats = std::bitset<32>(evaluator.GetHostNodeCats(input.nidx)[0]); EXPECT_EQ(cats, std::bitset<32>("11000000000000000000000000000000")); EXPECT_EQ(result.dir, kLeftDir); EXPECT_EQ(result.left_sum + result.right_sum, parent_sum); } { // -1.0s go right // -3.0s go left auto parent_sum = quantiser.ToFixedPoint(GradientPairPrecise{-5.0, 3.0}); auto feature_histogram = ConvertToInteger({{-1.0, 1.0}, {-3.0, 1.0}, {-1.0, 1.0}}); EvaluateSplitInputs input{4, 0, parent_sum, dh::ToSpan(feature_set), dh::ToSpan(feature_histogram)}; DeviceSplitCandidate result = evaluator.EvaluateSingleSplit(input, shared_inputs).split; auto cats = std::bitset<32>(evaluator.GetHostNodeCats(input.nidx)[0]); EXPECT_EQ(result.dir, kLeftDir); EXPECT_EQ(cats, std::bitset<32>("10100000000000000000000000000000")); EXPECT_EQ(result.left_sum + result.right_sum, parent_sum); } { // -1.0s go right // -3.0s go left auto parent_sum = quantiser.ToFixedPoint(GradientPairPrecise{-5.0, 3.0}); auto feature_histogram = ConvertToInteger({{-3.0, 1.0}, {-1.0, 1.0}, {-3.0, 1.0}}); EvaluateSplitInputs input{5, 0, parent_sum, dh::ToSpan(feature_set), dh::ToSpan(feature_histogram)}; DeviceSplitCandidate result = evaluator.EvaluateSingleSplit(input, shared_inputs).split; auto cats = std::bitset<32>(evaluator.GetHostNodeCats(input.nidx)[0]); EXPECT_EQ(cats, std::bitset<32>("01000000000000000000000000000000")); EXPECT_EQ(result.left_sum + result.right_sum, parent_sum); } } TEST(GpuHist, PartitionTwoFeatures) { TrainParam tparam = ZeroParam(); tparam.max_cat_to_onehot = 0; GPUTrainingParam param{tparam}; common::HistogramCuts cuts; cuts.cut_values_.HostVector() = std::vector{0.0, 1.0, 2.0, 0.0, 1.0, 2.0}; cuts.cut_ptrs_.HostVector() = std::vector{0, 3, 6}; cuts.min_vals_.HostVector() = std::vector{0.0, 0.0}; cuts.cut_ptrs_.SetDevice(0); cuts.cut_values_.SetDevice(0); cuts.min_vals_.SetDevice(0); thrust::device_vector feature_set = std::vector{0, 1}; thrust::device_vector monotonic_constraints(feature_set.size(), 0); dh::device_vector feature_types(feature_set.size(), FeatureType::kCategorical); common::Span d_feature_types(dh::ToSpan(feature_types)); auto max_cat = *std::max_element(cuts.cut_values_.HostVector().begin(), cuts.cut_values_.HostVector().end()); cuts.SetCategorical(true, max_cat); auto quantiser = DummyRoundingFactor(); EvaluateSplitSharedInputs shared_inputs{param, quantiser, d_feature_types, cuts.cut_ptrs_.ConstDeviceSpan(), cuts.cut_values_.ConstDeviceSpan(), cuts.min_vals_.ConstDeviceSpan(), false}; GPUHistEvaluator evaluator{tparam, static_cast(feature_set.size()), 0}; evaluator.Reset(cuts, dh::ToSpan(feature_types), feature_set.size(), tparam, 0); { auto parent_sum = quantiser.ToFixedPoint(GradientPairPrecise{-6.0, 3.0}); auto feature_histogram = ConvertToInteger({ {-2.0, 1.0}, {-2.0, 1.0}, {-2.0, 1.0}, {-1.0, 1.0}, {-1.0, 1.0}, {-4.0, 1.0}}); EvaluateSplitInputs input{0, 0, parent_sum, dh::ToSpan(feature_set), dh::ToSpan(feature_histogram)}; DeviceSplitCandidate result = evaluator.EvaluateSingleSplit(input, shared_inputs).split; auto cats = std::bitset<32>(evaluator.GetHostNodeCats(input.nidx)[0]); EXPECT_EQ(result.findex, 1); EXPECT_EQ(cats, std::bitset<32>("11000000000000000000000000000000")); EXPECT_EQ(result.left_sum + result.right_sum, parent_sum); } { auto parent_sum = quantiser.ToFixedPoint(GradientPairPrecise{-6.0, 3.0}); auto feature_histogram = ConvertToInteger({ {-2.0, 1.0}, {-2.0, 1.0}, {-2.0, 1.0}, {-1.0, 1.0}, {-2.5, 1.0}, {-2.5, 1.0}}); EvaluateSplitInputs input{1, 0, parent_sum, dh::ToSpan(feature_set), dh::ToSpan(feature_histogram)}; DeviceSplitCandidate result = evaluator.EvaluateSingleSplit(input, shared_inputs).split; auto cats = std::bitset<32>(evaluator.GetHostNodeCats(input.nidx)[0]); EXPECT_EQ(result.findex, 1); EXPECT_EQ(cats, std::bitset<32>("10000000000000000000000000000000")); EXPECT_EQ(result.left_sum + result.right_sum, parent_sum); } } TEST(GpuHist, PartitionTwoNodes) { TrainParam tparam = ZeroParam(); tparam.max_cat_to_onehot = 0; GPUTrainingParam param{tparam}; common::HistogramCuts cuts; cuts.cut_values_.HostVector() = std::vector{0.0, 1.0, 2.0}; cuts.cut_ptrs_.HostVector() = std::vector{0, 3}; cuts.min_vals_.HostVector() = std::vector{0.0}; cuts.cut_ptrs_.SetDevice(0); cuts.cut_values_.SetDevice(0); cuts.min_vals_.SetDevice(0); thrust::device_vector feature_set = std::vector{0}; thrust::device_vector monotonic_constraints(feature_set.size(), 0); dh::device_vector feature_types(feature_set.size(), FeatureType::kCategorical); common::Span d_feature_types(dh::ToSpan(feature_types)); auto max_cat = *std::max_element(cuts.cut_values_.HostVector().begin(), cuts.cut_values_.HostVector().end()); cuts.SetCategorical(true, max_cat); auto quantiser = DummyRoundingFactor(); EvaluateSplitSharedInputs shared_inputs{param, quantiser, d_feature_types, cuts.cut_ptrs_.ConstDeviceSpan(), cuts.cut_values_.ConstDeviceSpan(), cuts.min_vals_.ConstDeviceSpan(), false}; GPUHistEvaluator evaluator{tparam, static_cast(feature_set.size()), 0}; evaluator.Reset(cuts, dh::ToSpan(feature_types), feature_set.size(), tparam, 0); { auto parent_sum = quantiser.ToFixedPoint(GradientPairPrecise{-6.0, 3.0}); auto feature_histogram_a = ConvertToInteger({{-1.0, 1.0}, {-2.5, 1.0}, {-2.5, 1.0}, {-1.0, 1.0}, {-1.0, 1.0}, {-4.0, 1.0}}); thrust::device_vector inputs(2); inputs[0] = EvaluateSplitInputs{0, 0, parent_sum, dh::ToSpan(feature_set), dh::ToSpan(feature_histogram_a)}; auto feature_histogram_b = ConvertToInteger({{-1.0, 1.0}, {-1.0, 1.0}, {-4.0, 1.0}}); inputs[1] = EvaluateSplitInputs{1, 0, parent_sum, dh::ToSpan(feature_set), dh::ToSpan(feature_histogram_b)}; thrust::device_vector results(2); evaluator.EvaluateSplits({0, 1}, 1, dh::ToSpan(inputs), shared_inputs, dh::ToSpan(results)); GPUExpandEntry result_a = results[0]; GPUExpandEntry result_b = results[1]; EXPECT_EQ(std::bitset<32>(evaluator.GetHostNodeCats(0)[0]), std::bitset<32>("10000000000000000000000000000000")); EXPECT_EQ(std::bitset<32>(evaluator.GetHostNodeCats(1)[0]), std::bitset<32>("11000000000000000000000000000000")); } } void TestEvaluateSingleSplit(bool is_categorical) { auto quantiser = DummyRoundingFactor(); auto parent_sum = quantiser.ToFixedPoint(GradientPairPrecise{0.0, 1.0}); TrainParam tparam = ZeroParam(); GPUTrainingParam param{tparam}; common::HistogramCuts cuts{MakeCutsForTest({1.0, 2.0, 11.0, 12.0}, {0, 2, 4}, {0.0, 0.0}, 0)}; thrust::device_vector feature_set = std::vector{0, 1}; // Setup gradients so that second feature gets higher gain auto feature_histogram = ConvertToInteger({ {-0.5, 0.5}, {0.5, 0.5}, {-1.0, 0.5}, {1.0, 0.5}}); dh::device_vector feature_types(feature_set.size(), FeatureType::kCategorical); common::Span d_feature_types; if (is_categorical) { auto max_cat = *std::max_element(cuts.cut_values_.HostVector().begin(), cuts.cut_values_.HostVector().end()); cuts.SetCategorical(true, max_cat); d_feature_types = dh::ToSpan(feature_types); } EvaluateSplitInputs input{1, 0, parent_sum, dh::ToSpan(feature_set), dh::ToSpan(feature_histogram)}; EvaluateSplitSharedInputs shared_inputs{param, quantiser, d_feature_types, cuts.cut_ptrs_.ConstDeviceSpan(), cuts.cut_values_.ConstDeviceSpan(), cuts.min_vals_.ConstDeviceSpan(), false}; GPUHistEvaluator evaluator{ tparam, static_cast(feature_set.size()), 0}; evaluator.Reset(cuts, dh::ToSpan(feature_types), feature_set.size(), tparam, 0); DeviceSplitCandidate result = evaluator.EvaluateSingleSplit(input, shared_inputs).split; EXPECT_EQ(result.findex, 1); if (is_categorical) { ASSERT_TRUE(std::isnan(result.fvalue)); } else { EXPECT_EQ(result.fvalue, 11.0); } EXPECT_EQ(result.left_sum + result.right_sum, parent_sum); } TEST(GpuHist, EvaluateSingleSplit) { TestEvaluateSingleSplit(false); } TEST(GpuHist, EvaluateSingleCategoricalSplit) { TestEvaluateSingleSplit(true); } TEST(GpuHist, EvaluateSingleSplitMissing) { auto quantiser = DummyRoundingFactor(); auto parent_sum = quantiser.ToFixedPoint(GradientPairPrecise{1.0, 1.5}); TrainParam tparam = ZeroParam(); GPUTrainingParam param{tparam}; thrust::device_vector feature_set = std::vector{0}; thrust::device_vector feature_segments = std::vector{0, 2}; thrust::device_vector feature_values = std::vector{1.0, 2.0}; thrust::device_vector feature_min_values = std::vector{0.0}; auto feature_histogram = ConvertToInteger({{-0.5, 0.5}, {0.5, 0.5}}); EvaluateSplitInputs input{1,0, parent_sum, dh::ToSpan(feature_set), dh::ToSpan(feature_histogram)}; EvaluateSplitSharedInputs shared_inputs{param, quantiser, {}, dh::ToSpan(feature_segments), dh::ToSpan(feature_values), dh::ToSpan(feature_min_values), false}; GPUHistEvaluator evaluator(tparam, feature_set.size(), 0); DeviceSplitCandidate result = evaluator.EvaluateSingleSplit(input, shared_inputs).split; EXPECT_EQ(result.findex, 0); EXPECT_EQ(result.fvalue, 1.0); EXPECT_EQ(result.dir, kRightDir); EXPECT_EQ(result.left_sum,quantiser.ToFixedPoint(GradientPairPrecise(-0.5, 0.5))); EXPECT_EQ(result.right_sum, quantiser.ToFixedPoint(GradientPairPrecise(1.5, 1.0))); } TEST(GpuHist, EvaluateSingleSplitEmpty) { TrainParam tparam = ZeroParam(); GPUHistEvaluator evaluator(tparam, 1, 0); DeviceSplitCandidate result = evaluator .EvaluateSingleSplit( EvaluateSplitInputs{}, EvaluateSplitSharedInputs{ GPUTrainingParam(tparam), DummyRoundingFactor(), {}, {}, {}, {}, false}) .split; EXPECT_EQ(result.findex, -1); EXPECT_LT(result.loss_chg, 0.0f); } // Feature 0 has a better split, but the algorithm must select feature 1 TEST(GpuHist, EvaluateSingleSplitFeatureSampling) { auto quantiser = DummyRoundingFactor(); auto parent_sum = quantiser.ToFixedPoint(GradientPairPrecise{0.0, 1.0}); TrainParam tparam = ZeroParam(); tparam.UpdateAllowUnknown(Args{}); GPUTrainingParam param{tparam}; thrust::device_vector feature_set = std::vector{1}; thrust::device_vector feature_segments = std::vector{0, 2, 4}; thrust::device_vector feature_values = std::vector{1.0, 2.0, 11.0, 12.0}; thrust::device_vector feature_min_values = std::vector{0.0, 10.0}; auto feature_histogram = ConvertToInteger({ {-10.0, 0.5}, {10.0, 0.5}, {-0.5, 0.5}, {0.5, 0.5}}); EvaluateSplitInputs input{1,0, parent_sum, dh::ToSpan(feature_set), dh::ToSpan(feature_histogram)}; EvaluateSplitSharedInputs shared_inputs{param, quantiser, {}, dh::ToSpan(feature_segments), dh::ToSpan(feature_values), dh::ToSpan(feature_min_values), false}; GPUHistEvaluator evaluator(tparam, feature_min_values.size(), 0); DeviceSplitCandidate result = evaluator.EvaluateSingleSplit(input, shared_inputs).split; EXPECT_EQ(result.findex, 1); EXPECT_EQ(result.fvalue, 11.0); EXPECT_EQ(result.left_sum,quantiser.ToFixedPoint(GradientPairPrecise(-0.5, 0.5))); EXPECT_EQ(result.right_sum, quantiser.ToFixedPoint(GradientPairPrecise(0.5, 0.5))); } // Features 0 and 1 have identical gain, the algorithm must select 0 TEST(GpuHist, EvaluateSingleSplitBreakTies) { auto quantiser = DummyRoundingFactor(); auto parent_sum = quantiser.ToFixedPoint(GradientPairPrecise{0.0, 1.0}); TrainParam tparam = ZeroParam(); tparam.UpdateAllowUnknown(Args{}); GPUTrainingParam param{tparam}; thrust::device_vector feature_set = std::vector{0, 1}; thrust::device_vector feature_segments = std::vector{0, 2, 4}; thrust::device_vector feature_values = std::vector{1.0, 2.0, 11.0, 12.0}; thrust::device_vector feature_min_values = std::vector{0.0, 10.0}; auto feature_histogram = ConvertToInteger({ {-0.5, 0.5}, {0.5, 0.5}, {-0.5, 0.5}, {0.5, 0.5}}); EvaluateSplitInputs input{1,0, parent_sum, dh::ToSpan(feature_set), dh::ToSpan(feature_histogram)}; EvaluateSplitSharedInputs shared_inputs{param, quantiser, {}, dh::ToSpan(feature_segments), dh::ToSpan(feature_values), dh::ToSpan(feature_min_values), false}; GPUHistEvaluator evaluator(tparam, feature_min_values.size(), 0); DeviceSplitCandidate result = evaluator.EvaluateSingleSplit(input,shared_inputs).split; EXPECT_EQ(result.findex, 0); EXPECT_EQ(result.fvalue, 1.0); } TEST(GpuHist, EvaluateSplits) { thrust::device_vector out_splits(2); auto quantiser = DummyRoundingFactor(); auto parent_sum = quantiser.ToFixedPoint(GradientPairPrecise{0.0, 1.0}); TrainParam tparam = ZeroParam(); tparam.UpdateAllowUnknown(Args{}); GPUTrainingParam param{tparam}; thrust::device_vector feature_set = std::vector{0, 1}; thrust::device_vector feature_segments = std::vector{0, 2, 4}; thrust::device_vector feature_values = std::vector{1.0, 2.0, 11.0, 12.0}; thrust::device_vector feature_min_values = std::vector{0.0, 0.0}; auto feature_histogram_left = ConvertToInteger({ {-0.5, 0.5}, {0.5, 0.5}, {-1.0, 0.5}, {1.0, 0.5}}); auto feature_histogram_right = ConvertToInteger({ {-1.0, 0.5}, {1.0, 0.5}, {-0.5, 0.5}, {0.5, 0.5}}); EvaluateSplitInputs input_left{ 1,0, parent_sum, dh::ToSpan(feature_set), dh::ToSpan(feature_histogram_left)}; EvaluateSplitInputs input_right{ 2,0, parent_sum, dh::ToSpan(feature_set), dh::ToSpan(feature_histogram_right)}; EvaluateSplitSharedInputs shared_inputs{ param, quantiser, {}, dh::ToSpan(feature_segments), dh::ToSpan(feature_values), dh::ToSpan(feature_min_values), false }; GPUHistEvaluator evaluator{ tparam, static_cast(feature_min_values.size()), 0}; dh::device_vector inputs = std::vector{input_left,input_right}; evaluator.LaunchEvaluateSplits(input_left.feature_set.size(),dh::ToSpan(inputs),shared_inputs, evaluator.GetEvaluator(), dh::ToSpan(out_splits)); DeviceSplitCandidate result_left = out_splits[0]; EXPECT_EQ(result_left.findex, 1); EXPECT_EQ(result_left.fvalue, 11.0); DeviceSplitCandidate result_right = out_splits[1]; EXPECT_EQ(result_right.findex, 0); EXPECT_EQ(result_right.fvalue, 1.0); } TEST_F(TestPartitionBasedSplit, GpuHist) { dh::device_vector ft{std::vector{FeatureType::kCategorical}}; GPUHistEvaluator evaluator{param_, static_cast(info_.num_col_), 0}; cuts_.cut_ptrs_.SetDevice(0); cuts_.cut_values_.SetDevice(0); cuts_.min_vals_.SetDevice(0); evaluator.Reset(cuts_, dh::ToSpan(ft), info_.num_col_, param_, 0); // Convert the sample histogram to fixed point auto quantiser = DummyRoundingFactor(); thrust::host_vector h_hist; for(auto e: hist_[0]){ h_hist.push_back(quantiser.ToFixedPoint(e)); } dh::device_vector d_hist = h_hist; dh::device_vector feature_set{std::vector{0}}; EvaluateSplitInputs input{0, 0, quantiser.ToFixedPoint(total_gpair_), dh::ToSpan(feature_set), dh::ToSpan(d_hist)}; EvaluateSplitSharedInputs shared_inputs{GPUTrainingParam{param_}, quantiser, dh::ToSpan(ft), cuts_.cut_ptrs_.ConstDeviceSpan(), cuts_.cut_values_.ConstDeviceSpan(), cuts_.min_vals_.ConstDeviceSpan(), false}; auto split = evaluator.EvaluateSingleSplit(input, shared_inputs).split; ASSERT_NEAR(split.loss_chg, best_score_, 1e-2); } } // namespace tree } // namespace xgboost