import xgboost as xgb import numpy as np from sklearn.cross_validation import KFold, train_test_split from sklearn.metrics import mean_squared_error from sklearn.grid_search import GridSearchCV from sklearn.datasets import load_iris, load_digits, load_boston rng = np.random.RandomState(1994) def test_binary_classification(): digits = load_digits(2) y = digits['target'] X = digits['data'] kf = KFold(y.shape[0], n_folds=2, shuffle=True, random_state=rng) for train_index, test_index in kf: xgb_model = xgb.XGBClassifier().fit(X[train_index],y[train_index]) preds = xgb_model.predict(X[test_index]) labels = y[test_index] err = sum(1 for i in range(len(preds)) if int(preds[i]>0.5)!=labels[i]) / float(len(preds)) assert err < 0.1 def test_multiclass_classification(): iris = load_iris() y = iris['target'] X = iris['data'] kf = KFold(y.shape[0], n_folds=2, shuffle=True, random_state=rng) for train_index, test_index in kf: xgb_model = xgb.XGBClassifier().fit(X[train_index],y[train_index]) preds = xgb_model.predict(X[test_index]) labels = y[test_index] err = sum(1 for i in range(len(preds)) if int(preds[i]>0.5)!=labels[i]) / float(len(preds)) assert err < 0.3 def test_boston_housing_regression(): boston = load_boston() y = boston['target'] X = boston['data'] kf = KFold(y.shape[0], n_folds=2, shuffle=True, random_state=rng) for train_index, test_index in kf: xgb_model = xgb.XGBRegressor().fit(X[train_index],y[train_index]) preds = xgb_model.predict(X[test_index]) labels = y[test_index] assert mean_squared_error(preds, labels) < 9 def test_parameter_tuning(): boston = load_boston() y = boston['target'] X = boston['data'] xgb_model = xgb.XGBRegressor() clf = GridSearchCV(xgb_model, {'max_depth': [2,4,6], 'n_estimators': [50,100,200]}, verbose=1) clf.fit(X,y) assert clf.best_score_ < 0.7 assert clf.best_params_ == {'n_estimators': 100, 'max_depth': 4}