#' Cross Validation #' #' The cross validation function of xgboost. #' #' @param params The list of parameters. The complete list of parameters is available in the #' [online documentation](http://xgboost.readthedocs.io/en/latest/parameter.html). #' Below is a shorter summary: #' - `objective`: Objective function, common ones are #' - `reg:squarederror`: Regression with squared loss. #' - `binary:logistic`: Logistic regression for classification. #' #' See [xgb.train()] for complete list of objectives. #' - `eta`: Step size of each boosting step #' - `max_depth`: Maximum depth of the tree #' - `nthread`: Number of threads used in training. If not set, all threads are used #' #' See [xgb.train()] for further details. #' See also demo for walkthrough example in R. #' #' Note that, while `params` accepts a `seed` entry and will use such parameter for model training if #' supplied, this seed is not used for creation of train-test splits, which instead rely on R's own RNG #' system - thus, for reproducible results, one needs to call the [set.seed()] function beforehand. #' @param data An `xgb.DMatrix` object, with corresponding fields like `label` or bounds as required #' for model training by the objective. #' #' Note that only the basic `xgb.DMatrix` class is supported - variants such as `xgb.QuantileDMatrix` #' or `xgb.ExternalDMatrix` are not supported here. #' @param nrounds The max number of iterations. #' @param nfold The original dataset is randomly partitioned into `nfold` equal size subsamples. #' @param prediction A logical value indicating whether to return the test fold predictions #' from each CV model. This parameter engages the [xgb.cb.cv.predict()] callback. #' @param showsd Logical value whether to show standard deviation of cross validation. #' @param metrics List of evaluation metrics to be used in cross validation, #' when it is not specified, the evaluation metric is chosen according to objective function. #' Possible options are: #' - `error`: Binary classification error rate #' - `rmse`: Root mean square error #' - `logloss`: Negative log-likelihood function #' - `mae`: Mean absolute error #' - `mape`: Mean absolute percentage error #' - `auc`: Area under curve #' - `aucpr`: Area under PR curve #' - `merror`: Exact matching error used to evaluate multi-class classification #' @param obj Customized objective function. Returns gradient and second order #' gradient with given prediction and dtrain. #' @param feval Customized evaluation function. Returns #' `list(metric='metric-name', value='metric-value')` with given prediction and dtrain. #' @param stratified Logical flag indicating whether sampling of folds should be stratified #' by the values of outcome labels. For real-valued labels in regression objectives, #' stratification will be done by discretizing the labels into up to 5 buckets beforehand. #' #' If passing "auto", will be set to `TRUE` if the objective in `params` is a classification #' objective (from XGBoost's built-in objectives, doesn't apply to custom ones), and to #' `FALSE` otherwise. #' #' This parameter is ignored when `data` has a `group` field - in such case, the splitting #' will be based on whole groups (note that this might make the folds have different sizes). #' #' Value `TRUE` here is **not** supported for custom objectives. #' @param folds List with pre-defined CV folds (each element must be a vector of test fold's indices). #' When folds are supplied, the `nfold` and `stratified` parameters are ignored. #' #' If `data` has a `group` field and the objective requires this field, each fold (list element) #' must additionally have two attributes (retrievable through `attributes`) named `group_test` #' and `group_train`, which should hold the `group` to assign through [setinfo.xgb.DMatrix()] to #' the resulting DMatrices. #' @param train_folds List specifying which indices to use for training. If `NULL` #' (the default) all indices not specified in `folds` will be used for training. #' #' This is not supported when `data` has `group` field. #' @param verbose Logical flag. Should statistics be printed during the process? #' @param print_every_n Print each nth iteration evaluation messages when `verbose > 0`. #' Default is 1 which means all messages are printed. This parameter is passed to the #' [xgb.cb.print.evaluation()] callback. #' @param early_stopping_rounds If `NULL`, the early stopping function is not triggered. #' If set to an integer `k`, training with a validation set will stop if the performance #' doesn't improve for `k` rounds. #' Setting this parameter engages the [xgb.cb.early.stop()] callback. #' @param maximize If `feval` and `early_stopping_rounds` are set, #' then this parameter must be set as well. #' When it is `TRUE`, it means the larger the evaluation score the better. #' This parameter is passed to the [xgb.cb.early.stop()] callback. #' @param callbacks A list of callback functions to perform various task during boosting. #' See [xgb.Callback()]. Some of the callbacks are automatically created depending on the #' parameters' values. User can provide either existing or their own callback methods in order #' to customize the training process. #' @param ... Other parameters to pass to `params`. #' #' @details #' The original sample is randomly partitioned into `nfold` equal size subsamples. #' #' Of the `nfold` subsamples, a single subsample is retained as the validation data for testing the model, #' and the remaining `nfold - 1` subsamples are used as training data. #' #' The cross-validation process is then repeated `nrounds` times, with each of the #' `nfold` subsamples used exactly once as the validation data. #' #' All observations are used for both training and validation. #' #' Adapted from \url{https://en.wikipedia.org/wiki/Cross-validation_\%28statistics\%29} #' #' @return #' An object of class 'xgb.cv.synchronous' with the following elements: #' - `call`: Function call. #' - `params`: Parameters that were passed to the xgboost library. Note that it does not #' capture parameters changed by the [xgb.cb.reset.parameters()] callback. #' - `evaluation_log`: Evaluation history stored as a `data.table` with the #' first column corresponding to iteration number and the rest corresponding to the #' CV-based evaluation means and standard deviations for the training and test CV-sets. #' It is created by the [xgb.cb.evaluation.log()] callback. #' - `niter`: Number of boosting iterations. #' - `nfeatures`: Number of features in training data. #' - `folds`: The list of CV folds' indices - either those passed through the `folds` #' parameter or randomly generated. #' - `best_iteration`: Iteration number with the best evaluation metric value #' (only available with early stopping). #' #' Plus other potential elements that are the result of callbacks, such as a list `cv_predict` with #' a sub-element `pred` when passing `prediction = TRUE`, which is added by the [xgb.cb.cv.predict()] #' callback (note that one can also pass it manually under `callbacks` with different settings, #' such as saving also the models created during cross validation); or a list `early_stop` which #' will contain elements such as `best_iteration` when using the early stopping callback ([xgb.cb.early.stop()]). #' #' @examples #' data(agaricus.train, package = "xgboost") #' #' dtrain <- with(agaricus.train, xgb.DMatrix(data, label = label, nthread = 2)) #' #' cv <- xgb.cv( #' data = dtrain, #' nrounds = 3, #' nthread = 2, #' nfold = 5, #' metrics = list("rmse","auc"), #' max_depth = 3, #' eta = 1,objective = "binary:logistic" #' ) #' print(cv) #' print(cv, verbose = TRUE) #' #' @export xgb.cv <- function(params = list(), data, nrounds, nfold, prediction = FALSE, showsd = TRUE, metrics = list(), obj = NULL, feval = NULL, stratified = "auto", folds = NULL, train_folds = NULL, verbose = TRUE, print_every_n = 1L, early_stopping_rounds = NULL, maximize = NULL, callbacks = list(), ...) { check.deprecation(...) stopifnot(inherits(data, "xgb.DMatrix")) if (inherits(data, "xgb.DMatrix") && .Call(XGCheckNullPtr_R, data)) { stop("'data' is an invalid 'xgb.DMatrix' object. Must be constructed again.") } params <- check.booster.params(params, ...) # TODO: should we deprecate the redundant 'metrics' parameter? for (m in metrics) params <- c(params, list("eval_metric" = m)) check.custom.obj() check.custom.eval() if (stratified == "auto") { if (is.character(params$objective)) { stratified <- ( (params$objective %in% .CLASSIFICATION_OBJECTIVES()) && !(params$objective %in% .RANKING_OBJECTIVES()) ) } else { stratified <- FALSE } } # Check the labels and groups cv_label <- getinfo(data, "label") cv_group <- getinfo(data, "group") if (!is.null(train_folds) && NROW(cv_group)) { stop("'train_folds' is not supported for DMatrix object with 'group' field.") } # CV folds if (!is.null(folds)) { if (!is.list(folds) || length(folds) < 2) stop("'folds' must be a list with 2 or more elements that are vectors of indices for each CV-fold") nfold <- length(folds) } else { if (nfold <= 1) stop("'nfold' must be > 1") folds <- generate.cv.folds(nfold, nrow(data), stratified, cv_label, cv_group, params) } # Callbacks tmp <- .process.callbacks(callbacks, is_cv = TRUE) callbacks <- tmp$callbacks cb_names <- tmp$cb_names rm(tmp) # Early stopping callback if (!is.null(early_stopping_rounds) && !("early_stop" %in% cb_names)) { callbacks <- add.callback( callbacks, xgb.cb.early.stop( early_stopping_rounds, maximize = maximize, verbose = verbose ), as_first_elt = TRUE ) } # verbosity & evaluation printing callback: params <- c(params, list(silent = 1)) print_every_n <- max(as.integer(print_every_n), 1L) if (verbose && !("print_evaluation" %in% cb_names)) { callbacks <- add.callback(callbacks, xgb.cb.print.evaluation(print_every_n, showsd = showsd)) } # evaluation log callback: always is on in CV if (!("evaluation_log" %in% cb_names)) { callbacks <- add.callback(callbacks, xgb.cb.evaluation.log()) } # CV-predictions callback if (prediction && !("cv_predict" %in% cb_names)) { callbacks <- add.callback(callbacks, xgb.cb.cv.predict(save_models = FALSE)) } # create the booster-folds # train_folds dall <- data bst_folds <- lapply(seq_along(folds), function(k) { dtest <- xgb.slice.DMatrix(dall, folds[[k]], allow_groups = TRUE) # code originally contributed by @RolandASc on stackoverflow if (is.null(train_folds)) dtrain <- xgb.slice.DMatrix(dall, unlist(folds[-k]), allow_groups = TRUE) else dtrain <- xgb.slice.DMatrix(dall, train_folds[[k]], allow_groups = TRUE) if (!is.null(attributes(folds[[k]])$group_test)) { setinfo(dtest, "group", attributes(folds[[k]])$group_test) setinfo(dtrain, "group", attributes(folds[[k]])$group_train) } bst <- xgb.Booster( params = params, cachelist = list(dtrain, dtest), modelfile = NULL ) bst <- bst$bst list(dtrain = dtrain, bst = bst, evals = list(train = dtrain, test = dtest), index = folds[[k]]) }) # extract parameters that can affect the relationship b/w #trees and #iterations num_class <- max(as.numeric(NVL(params[['num_class']], 1)), 1) # nolint # those are fixed for CV (no training continuation) begin_iteration <- 1 end_iteration <- nrounds .execute.cb.before.training( callbacks, bst_folds, dall, NULL, begin_iteration, end_iteration ) # synchronous CV boosting: run CV folds' models within each iteration for (iteration in begin_iteration:end_iteration) { .execute.cb.before.iter( callbacks, bst_folds, dall, NULL, iteration ) msg <- lapply(bst_folds, function(fd) { xgb.iter.update( bst = fd$bst, dtrain = fd$dtrain, iter = iteration - 1, obj = obj ) xgb.iter.eval( bst = fd$bst, evals = fd$evals, iter = iteration - 1, feval = feval ) }) msg <- simplify2array(msg) should_stop <- .execute.cb.after.iter( callbacks, bst_folds, dall, NULL, iteration, msg ) if (should_stop) break } cb_outputs <- .execute.cb.after.training( callbacks, bst_folds, dall, NULL, iteration, msg ) # the CV result ret <- list( call = match.call(), params = params, niter = iteration, nfeatures = ncol(dall), folds = folds ) ret <- c(ret, cb_outputs) class(ret) <- 'xgb.cv.synchronous' return(invisible(ret)) } #' Print xgb.cv result #' #' Prints formatted results of [xgb.cv()]. #' #' @param x An `xgb.cv.synchronous` object. #' @param verbose Whether to print detailed data. #' @param ... Passed to `data.table.print()`. #' #' @details #' When not verbose, it would only print the evaluation results, #' including the best iteration (when available). #' #' @examples #' data(agaricus.train, package = "xgboost") #' #' train <- agaricus.train #' cv <- xgb.cv( #' data = xgb.DMatrix(train$data, label = train$label), #' nfold = 5, #' max_depth = 2, #' eta = 1, #' nthread = 2, #' nrounds = 2, #' objective = "binary:logistic" #' ) #' print(cv) #' print(cv, verbose = TRUE) #' #' @rdname print.xgb.cv #' @method print xgb.cv.synchronous #' @export print.xgb.cv.synchronous <- function(x, verbose = FALSE, ...) { cat('##### xgb.cv ', length(x$folds), '-folds\n', sep = '') if (verbose) { if (!is.null(x$call)) { cat('call:\n ') print(x$call) } if (!is.null(x$params)) { cat('params (as set within xgb.cv):\n') cat(' ', paste(names(x$params), paste0('"', unlist(x$params), '"'), sep = ' = ', collapse = ', '), '\n', sep = '') } for (n in c('niter', 'best_iteration')) { if (is.null(x$early_stop[[n]])) next cat(n, ': ', x$early_stop[[n]], '\n', sep = '') } if (!is.null(x$cv_predict$pred)) { cat('pred:\n') str(x$cv_predict$pred) } } if (verbose) cat('evaluation_log:\n') print(x$evaluation_log, row.names = FALSE, ...) if (!is.null(x$early_stop$best_iteration)) { cat('Best iteration:\n') print(x$evaluation_log[x$early_stop$best_iteration], row.names = FALSE, ...) } invisible(x) }