# pylint: skip-file import sys, argparse import xgboost as xgb import numpy as np from sklearn.datasets import make_classification import time n = 1000000 num_rounds = 500 def run_benchmark(args, gpu_algorithm, cpu_algorithm): print("Generating dataset: {} rows * {} columns".format(args.rows,args.columns)) X, y = make_classification(args.rows, n_features=args.columns, random_state=7) dtrain = xgb.DMatrix(X, y) param = {'objective': 'binary:logistic', 'max_depth': 6, 'silent': 1, 'eval_metric': 'auc'} param['tree_method'] = gpu_algorithm print("Training with '%s'" % param['tree_method']) tmp = time.time() xgb.train(param, dtrain, args.iterations) print ("Time: %s seconds" % (str(time.time() - tmp))) param['tree_method'] = cpu_algorithm print("Training with '%s'" % param['tree_method']) tmp = time.time() xgb.train(param, dtrain, args.iterations) print ("Time: %s seconds" % (str(time.time() - tmp))) parser = argparse.ArgumentParser() parser.add_argument('--algorithm', choices=['all', 'gpu_exact', 'gpu_hist'], default='all') parser.add_argument('--rows',type=int,default=1000000) parser.add_argument('--columns',type=int,default=50) parser.add_argument('--iterations',type=int,default=500) args = parser.parse_args() if 'gpu_hist' in args.algorithm: run_benchmark(args, args.algorithm, 'hist') if 'gpu_exact' in args.algorithm: run_benchmark(args, args.algorithm, 'exact') if 'all' in args.algorithm: run_benchmark(args, 'gpu_exact', 'exact') run_benchmark(args, 'gpu_hist', 'hist')