/*! * Copyright 2017-2020 XGBoost contributors */ #include #include #include #include "../helpers.h" #include "test_predictor.h" #include "../../../src/gbm/gbtree_model.h" #include "../../../src/data/adapter.h" namespace xgboost { TEST(CpuPredictor, Basic) { auto lparam = CreateEmptyGenericParam(GPUIDX); std::unique_ptr cpu_predictor = std::unique_ptr(Predictor::Create("cpu_predictor", &lparam)); size_t constexpr kRows = 5; size_t constexpr kCols = 5; LearnerModelParam param; param.num_feature = kCols; param.base_score = 0.0; param.num_output_group = 1; gbm::GBTreeModel model = CreateTestModel(¶m); auto dmat = RandomDataGenerator(kRows, kCols, 0).GenerateDMatrix(); // Test predict batch PredictionCacheEntry out_predictions; cpu_predictor->PredictBatch(dmat.get(), &out_predictions, model, 0); ASSERT_EQ(model.trees.size(), out_predictions.version); std::vector& out_predictions_h = out_predictions.predictions.HostVector(); for (size_t i = 0; i < out_predictions.predictions.Size(); i++) { ASSERT_EQ(out_predictions_h[i], 1.5); } // Test predict instance auto const &batch = *dmat->GetBatches().begin(); for (size_t i = 0; i < batch.Size(); i++) { std::vector instance_out_predictions; cpu_predictor->PredictInstance(batch[i], &instance_out_predictions, model); ASSERT_EQ(instance_out_predictions[0], 1.5); } // Test predict leaf std::vector leaf_out_predictions; cpu_predictor->PredictLeaf(dmat.get(), &leaf_out_predictions, model); for (auto v : leaf_out_predictions) { ASSERT_EQ(v, 0); } // Test predict contribution HostDeviceVector out_contribution_hdv; auto& out_contribution = out_contribution_hdv.HostVector(); cpu_predictor->PredictContribution(dmat.get(), &out_contribution_hdv, model); ASSERT_EQ(out_contribution.size(), kRows * (kCols + 1)); for (size_t i = 0; i < out_contribution.size(); ++i) { auto const& contri = out_contribution[i]; // shift 1 for bias, as test tree is a decision dump, only global bias is // filled with LeafValue(). if ((i + 1) % (kCols + 1) == 0) { ASSERT_EQ(out_contribution.back(), 1.5f); } else { ASSERT_EQ(contri, 0); } } // Test predict contribution (approximate method) cpu_predictor->PredictContribution(dmat.get(), &out_contribution_hdv, model, 0, nullptr, true); for (size_t i = 0; i < out_contribution.size(); ++i) { auto const& contri = out_contribution[i]; // shift 1 for bias, as test tree is a decision dump, only global bias is // filled with LeafValue(). if ((i + 1) % (kCols + 1) == 0) { ASSERT_EQ(out_contribution.back(), 1.5f); } else { ASSERT_EQ(contri, 0); } } } TEST(CpuPredictor, ExternalMemory) { dmlc::TemporaryDirectory tmpdir; std::string filename = tmpdir.path + "/big.libsvm"; size_t constexpr kPageSize = 64, kEntriesPerCol = 3; size_t constexpr kEntries = kPageSize * kEntriesPerCol * 2; std::unique_ptr dmat = CreateSparsePageDMatrix(kEntries, kPageSize, filename); auto lparam = CreateEmptyGenericParam(GPUIDX); std::unique_ptr cpu_predictor = std::unique_ptr(Predictor::Create("cpu_predictor", &lparam)); LearnerModelParam param; param.base_score = 0; param.num_feature = dmat->Info().num_col_; param.num_output_group = 1; gbm::GBTreeModel model = CreateTestModel(¶m); // Test predict batch PredictionCacheEntry out_predictions; cpu_predictor->PredictBatch(dmat.get(), &out_predictions, model, 0); std::vector &out_predictions_h = out_predictions.predictions.HostVector(); ASSERT_EQ(out_predictions.predictions.Size(), dmat->Info().num_row_); for (const auto& v : out_predictions_h) { ASSERT_EQ(v, 1.5); } // Test predict leaf std::vector leaf_out_predictions; cpu_predictor->PredictLeaf(dmat.get(), &leaf_out_predictions, model); ASSERT_EQ(leaf_out_predictions.size(), dmat->Info().num_row_); for (const auto& v : leaf_out_predictions) { ASSERT_EQ(v, 0); } // Test predict contribution HostDeviceVector out_contribution_hdv; auto& out_contribution = out_contribution_hdv.HostVector(); cpu_predictor->PredictContribution(dmat.get(), &out_contribution_hdv, model); ASSERT_EQ(out_contribution.size(), dmat->Info().num_row_ * (dmat->Info().num_col_ + 1)); for (size_t i = 0; i < out_contribution.size(); ++i) { auto const& contri = out_contribution[i]; // shift 1 for bias, as test tree is a decision dump, only global bias is filled with LeafValue(). if ((i + 1) % (dmat->Info().num_col_ + 1) == 0) { ASSERT_EQ(out_contribution.back(), 1.5f); } else { ASSERT_EQ(contri, 0); } } // Test predict contribution (approximate method) HostDeviceVector out_contribution_approximate_hdv; auto& out_contribution_approximate = out_contribution_approximate_hdv.HostVector(); cpu_predictor->PredictContribution( dmat.get(), &out_contribution_approximate_hdv, model, 0, nullptr, true); ASSERT_EQ(out_contribution_approximate.size(), dmat->Info().num_row_ * (dmat->Info().num_col_ + 1)); for (size_t i = 0; i < out_contribution.size(); ++i) { auto const& contri = out_contribution[i]; // shift 1 for bias, as test tree is a decision dump, only global bias is filled with LeafValue(). if ((i + 1) % (dmat->Info().num_col_ + 1) == 0) { ASSERT_EQ(out_contribution.back(), 1.5f); } else { ASSERT_EQ(contri, 0); } } } TEST(CpuPredictor, InplacePredict) { bst_row_t constexpr kRows{128}; bst_feature_t constexpr kCols{64}; auto gen = RandomDataGenerator{kRows, kCols, 0.5}.Device(-1); { HostDeviceVector data; gen.GenerateDense(&data); ASSERT_EQ(data.Size(), kRows * kCols); std::shared_ptr x{ new data::DenseAdapter(data.HostPointer(), kRows, kCols)}; TestInplacePrediction(x, "cpu_predictor", kRows, kCols, -1); } { HostDeviceVector data; HostDeviceVector rptrs; HostDeviceVector columns; gen.GenerateCSR(&data, &rptrs, &columns); std::shared_ptr x{new data::CSRAdapter( rptrs.HostPointer(), columns.HostPointer(), data.HostPointer(), kRows, data.Size(), kCols)}; TestInplacePrediction(x, "cpu_predictor", kRows, kCols, -1); } } TEST(CpuPredictor, LesserFeatures) { TestPredictionWithLesserFeatures("cpu_predictor"); } } // namespace xgboost