/** * Copyright 2022-2023 by XGBoost contributors. */ #include #include // for bst_node_t #include // for Context #include // for transform #include // for distance #include // for vector #include "../../../src/common/numeric.h" // for ==RunLengthEncode #include "../../../src/common/row_set.h" // for RowSetCollection #include "../../../src/data/gradient_index.h" // for GHistIndexMatrix #include "../../../src/tree/common_row_partitioner.h" #include "../../../src/tree/hist/expand_entry.h" // for CPUExpandEntry #include "../helpers.h" // for RandomDataGenerator #include "test_partitioner.h" // for GetSplit namespace xgboost::tree { namespace { void TestLeafPartition(size_t n_samples) { size_t const n_features = 2, base_rowid = 0; Context ctx; common::RowSetCollection row_set; CommonRowPartitioner partitioner{&ctx, n_samples, base_rowid, false}; auto Xy = RandomDataGenerator{n_samples, n_features, 0}.GenerateDMatrix(true); std::vector candidates{{0, 0}}; candidates.front().split.loss_chg = 0.4; RegTree tree; std::vector hess(n_samples, 0); // emulate sampling auto not_sampled = [](size_t i) { size_t const kSampleFactor{3}; return i % kSampleFactor != 0; }; for (size_t i = 0; i < hess.size(); ++i) { if (not_sampled(i)) { hess[i] = 1.0f; } } std::vector h_nptr; float split_value{0}; for (auto const& page : Xy->GetBatches(&ctx, BatchParam{64, 0.2})) { bst_feature_t const split_ind = 0; auto ptr = page.cut.Ptrs()[split_ind + 1]; split_value = page.cut.Values().at(ptr / 2); GetSplit(&tree, split_value, &candidates); partitioner.UpdatePosition(&ctx, page, candidates, &tree); std::vector position; partitioner.LeafPartition(&ctx, tree, hess, &position); std::sort(position.begin(), position.end()); size_t beg = std::distance( position.begin(), std::find_if(position.begin(), position.end(), [&](bst_node_t nidx) { return nidx >= 0; })); std::vector nptr; common::RunLengthEncode(position.cbegin() + beg, position.cend(), &nptr); std::transform(nptr.begin(), nptr.end(), nptr.begin(), [&](size_t x) { return x + beg; }); auto n_uniques = std::unique(position.begin() + beg, position.end()) - (position.begin() + beg); ASSERT_EQ(nptr.size(), n_uniques + 1); ASSERT_EQ(nptr[0], beg); ASSERT_EQ(nptr.back(), n_samples); h_nptr = nptr; } if (h_nptr.front() == n_samples) { return; } ASSERT_GE(h_nptr.size(), 2); for (auto const& page : Xy->GetBatches()) { auto batch = page.GetView(); size_t left{0}; for (size_t i = 0; i < batch.Size(); ++i) { if (not_sampled(i) && batch[i].front().fvalue < split_value) { left++; } } ASSERT_EQ(left, h_nptr[1] - h_nptr[0]); // equal to number of sampled assigned to left } } } // anonymous namespace TEST(CommonRowPartitioner, LeafPartition) { for (auto n_samples : {0ul, 1ul, 128ul, 256ul}) { TestLeafPartition(n_samples); } } } // namespace xgboost::tree