/*! * Copyright 2017-2018 XGBoost contributors */ #include #include #include #include #include #include "../helpers.h" #include "gtest/gtest.h" #include "../../../src/data/sparse_page_source.h" #include "../../../src/gbm/gbtree_model.h" #include "../../../src/tree/updater_gpu_hist.cu" #include "../../../src/tree/updater_gpu_common.cuh" #include "../../../src/common/common.h" namespace xgboost { namespace tree { template void BuildGidx(DeviceShard* shard, int n_rows, int n_cols, bst_float sparsity=0) { auto dmat = CreateDMatrix(n_rows, n_cols, sparsity, 3); const SparsePage& batch = *(*dmat)->GetRowBatches().begin(); common::HistCutMatrix cmat; cmat.row_ptr = {0, 3, 6, 9, 12, 15, 18, 21, 24}; cmat.min_val = {0.1f, 0.2f, 0.3f, 0.1f, 0.2f, 0.3f, 0.2f, 0.2f}; // 24 cut fields, 3 cut fields for each feature (column). cmat.cut = {0.30f, 0.67f, 1.64f, 0.32f, 0.77f, 1.95f, 0.29f, 0.70f, 1.80f, 0.32f, 0.75f, 1.85f, 0.18f, 0.59f, 1.69f, 0.25f, 0.74f, 2.00f, 0.26f, 0.74f, 1.98f, 0.26f, 0.71f, 1.83f}; auto is_dense = (*dmat)->Info().num_nonzero_ == (*dmat)->Info().num_row_ * (*dmat)->Info().num_col_; shard->InitCompressedData(cmat, batch, is_dense); delete dmat; } TEST(GpuHist, BuildGidxDense) { int constexpr kNRows = 16, kNCols = 8; TrainParam param; param.max_depth = 1; param.n_gpus = 1; param.max_leaves = 0; DeviceShard shard(0, 0, kNRows, param); BuildGidx(&shard, kNRows, kNCols); std::vector h_gidx_buffer(shard.gidx_buffer.size()); dh::CopyDeviceSpanToVector(&h_gidx_buffer, shard.gidx_buffer); common::CompressedIterator gidx(h_gidx_buffer.data(), 25); ASSERT_EQ(shard.ellpack_matrix.row_stride, kNCols); std::vector solution = { 0, 3, 8, 9, 14, 17, 20, 21, 0, 4, 7, 10, 14, 16, 19, 22, 1, 3, 7, 11, 14, 15, 19, 21, 2, 3, 7, 9, 13, 16, 20, 22, 2, 3, 6, 9, 12, 16, 20, 21, 1, 5, 6, 10, 13, 16, 20, 21, 2, 5, 8, 9, 13, 17, 19, 22, 2, 4, 6, 10, 14, 17, 19, 21, 2, 5, 7, 9, 13, 16, 19, 22, 0, 3, 8, 10, 12, 16, 19, 22, 1, 3, 7, 10, 13, 16, 19, 21, 1, 3, 8, 10, 13, 17, 20, 22, 2, 4, 6, 9, 14, 15, 19, 22, 1, 4, 6, 9, 13, 16, 19, 21, 2, 4, 8, 10, 14, 15, 19, 22, 1, 4, 7, 10, 14, 16, 19, 21, }; for (size_t i = 0; i < kNRows * kNCols; ++i) { ASSERT_EQ(solution[i], gidx[i]); } } TEST(GpuHist, BuildGidxSparse) { int constexpr kNRows = 16, kNCols = 8; TrainParam param; param.max_depth = 1; param.n_gpus = 1; param.max_leaves = 0; DeviceShard shard(0, 0, kNRows, param); BuildGidx(&shard, kNRows, kNCols, 0.9f); std::vector h_gidx_buffer(shard.gidx_buffer.size()); dh::CopyDeviceSpanToVector(&h_gidx_buffer, shard.gidx_buffer); common::CompressedIterator gidx(h_gidx_buffer.data(), 25); ASSERT_LE(shard.ellpack_matrix.row_stride, 3); // row_stride = 3, 16 rows, 48 entries for ELLPack std::vector solution = { 15, 24, 24, 0, 24, 24, 24, 24, 24, 24, 24, 24, 20, 24, 24, 24, 24, 24, 24, 24, 24, 5, 24, 24, 0, 16, 24, 15, 24, 24, 24, 24, 24, 7, 14, 16, 4, 24, 24, 24, 24, 24, 9, 24, 24, 1, 24, 24 }; for (size_t i = 0; i < kNRows * shard.ellpack_matrix.row_stride; ++i) { ASSERT_EQ(solution[i], gidx[i]); } } std::vector GetHostHistGpair() { // 24 bins, 3 bins for each feature (column). std::vector hist_gpair = { {0.8314f, 0.7147f}, {1.7989f, 3.7312f}, {3.3846f, 3.4598f}, {2.9277f, 3.5886f}, {1.8429f, 2.4152f}, {1.2443f, 1.9019f}, {1.6380f, 2.9174f}, {1.5657f, 2.5107f}, {2.8111f, 2.4776f}, {2.1322f, 3.0651f}, {3.2927f, 3.8540f}, {0.5899f, 0.9866f}, {1.5185f, 1.6263f}, {2.0686f, 3.1844f}, {2.4278f, 3.0950f}, {1.5105f, 2.1403f}, {2.6922f, 4.2217f}, {1.8122f, 1.5437f}, {0.0000f, 0.0000f}, {4.3245f, 5.7955f}, {1.6903f, 2.1103f}, {2.4012f, 4.4754f}, {3.6136f, 3.4303f}, {0.0000f, 0.0000f} }; return hist_gpair; } template void TestBuildHist(GPUHistBuilderBase& builder) { int const kNRows = 16, kNCols = 8; TrainParam param; param.max_depth = 6; param.n_gpus = 1; param.max_leaves = 0; DeviceShard shard(0, 0, kNRows, param); BuildGidx(&shard, kNRows, kNCols); xgboost::SimpleLCG gen; xgboost::SimpleRealUniformDistribution dist(0.0f, 1.0f); std::vector h_gpair(kNRows); for (auto &gpair : h_gpair) { bst_float grad = dist(&gen); bst_float hess = dist(&gen); gpair = GradientPair(grad, hess); } int num_symbols = shard.n_bins + 1; thrust::host_vector h_gidx_buffer ( shard.gidx_buffer.size()); common::CompressedByteT* d_gidx_buffer_ptr = shard.gidx_buffer.data(); dh::safe_cuda(cudaMemcpy(h_gidx_buffer.data(), d_gidx_buffer_ptr, sizeof(common::CompressedByteT) * shard.gidx_buffer.size(), cudaMemcpyDeviceToHost)); auto gidx = common::CompressedIterator(h_gidx_buffer.data(), num_symbols); shard.ridx_segments.resize(1); shard.ridx_segments[0] = Segment(0, kNRows); shard.hist.AllocateHistogram(0); dh::CopyVectorToDeviceSpan(shard.gpair, h_gpair); thrust::sequence( thrust::device_pointer_cast(shard.ridx.Current()), thrust::device_pointer_cast(shard.ridx.Current() + shard.ridx.Size())); builder.Build(&shard, 0); DeviceHistogram d_hist = shard.hist; auto node_histogram = d_hist.GetNodeHistogram(0); // d_hist.data stored in float, not gradient pair thrust::host_vector h_result (d_hist.Data().size() / 2); size_t data_size = sizeof(GradientSumT) / (sizeof(GradientSumT) / sizeof(typename GradientSumT::ValueT)); data_size *= d_hist.Data().size(); dh::safe_cuda(cudaMemcpy(h_result.data(), node_histogram.data(), data_size, cudaMemcpyDeviceToHost)); std::vector solution = GetHostHistGpair(); std::cout << std::fixed; for (size_t i = 0; i < h_result.size(); ++i) { EXPECT_NEAR(h_result[i].GetGrad(), solution[i].GetGrad(), 0.01f); EXPECT_NEAR(h_result[i].GetHess(), solution[i].GetHess(), 0.01f); } } TEST(GpuHist, BuildHistGlobalMem) { GlobalMemHistBuilder double_builder; TestBuildHist(double_builder); GlobalMemHistBuilder float_builder; TestBuildHist(float_builder); } TEST(GpuHist, BuildHistSharedMem) { SharedMemHistBuilder double_builder; TestBuildHist(double_builder); SharedMemHistBuilder float_builder; TestBuildHist(float_builder); } common::HistCutMatrix GetHostCutMatrix () { common::HistCutMatrix cmat; cmat.row_ptr = {0, 3, 6, 9, 12, 15, 18, 21, 24}; cmat.min_val = {0.1f, 0.2f, 0.3f, 0.1f, 0.2f, 0.3f, 0.2f, 0.2f}; // 24 cut fields, 3 cut fields for each feature (column). // Each row of the cut represents the cuts for a data column. cmat.cut = {0.30f, 0.67f, 1.64f, 0.32f, 0.77f, 1.95f, 0.29f, 0.70f, 1.80f, 0.32f, 0.75f, 1.85f, 0.18f, 0.59f, 1.69f, 0.25f, 0.74f, 2.00f, 0.26f, 0.74f, 1.98f, 0.26f, 0.71f, 1.83f}; return cmat; } // TODO(trivialfis): This test is over simplified. TEST(GpuHist, EvaluateSplits) { constexpr int kNRows = 16; constexpr int kNCols = 8; TrainParam param; param.max_depth = 1; param.n_gpus = 1; param.colsample_bynode = 1; param.colsample_bylevel = 1; param.colsample_bytree = 1; param.min_child_weight = 0.01; // Disable all parameters. param.reg_alpha = 0.0; param.reg_lambda = 0; param.max_delta_step = 0.0; for (size_t i = 0; i < kNCols; ++i) { param.monotone_constraints.emplace_back(0); } int max_bins = 4; // Initialize DeviceShard std::unique_ptr> shard { new DeviceShard(0, 0, kNRows, param)}; // Initialize DeviceShard::node_sum_gradients shard->node_sum_gradients = {{6.4f, 12.8f}}; // Initialize DeviceShard::cut common::HistCutMatrix cmat = GetHostCutMatrix(); // Copy cut matrix to device. shard->ba.Allocate(0, &(shard->feature_segments), cmat.row_ptr.size(), &(shard->min_fvalue), cmat.min_val.size(), &(shard->gidx_fvalue_map), 24, &(shard->monotone_constraints), kNCols); dh::CopyVectorToDeviceSpan(shard->feature_segments, cmat.row_ptr); dh::CopyVectorToDeviceSpan(shard->gidx_fvalue_map, cmat.cut); dh::CopyVectorToDeviceSpan(shard->monotone_constraints, param.monotone_constraints); shard->ellpack_matrix.feature_segments = shard->feature_segments; shard->ellpack_matrix.gidx_fvalue_map = shard->gidx_fvalue_map; dh::CopyVectorToDeviceSpan(shard->min_fvalue, cmat.min_val); shard->ellpack_matrix.min_fvalue = shard->min_fvalue; // Initialize DeviceShard::hist shard->hist.Init(0, (max_bins - 1) * kNCols); shard->hist.AllocateHistogram(0); // Each row of hist_gpair represents gpairs for one feature. // Each entry represents a bin. std::vector hist_gpair = GetHostHistGpair(); std::vector hist; for (auto pair : hist_gpair) { hist.push_back(pair.GetGrad()); hist.push_back(pair.GetHess()); } ASSERT_EQ(shard->hist.Data().size(), hist.size()); thrust::copy(hist.begin(), hist.end(), shard->hist.Data().begin()); // Initialize GPUHistMaker GPUHistMakerSpecialised hist_maker = GPUHistMakerSpecialised(); hist_maker.param_ = param; hist_maker.shards_.push_back(std::move(shard)); hist_maker.column_sampler_.Init(kNCols, param.colsample_bynode, param.colsample_bylevel, param.colsample_bytree, false); RegTree tree; MetaInfo info; info.num_row_ = kNRows; info.num_col_ = kNCols; hist_maker.info_ = &info; hist_maker.node_value_constraints_.resize(1); hist_maker.node_value_constraints_[0].lower_bound = -1.0; hist_maker.node_value_constraints_[0].upper_bound = 1.0; std::vector res = hist_maker.EvaluateSplits({ 0,0 }, &tree); ASSERT_EQ(res[0].findex, 7); ASSERT_EQ(res[1].findex, 7); ASSERT_NEAR(res[0].fvalue, 0.26, xgboost::kRtEps); ASSERT_NEAR(res[1].fvalue, 0.26, xgboost::kRtEps); } TEST(GpuHist, ApplySplit) { GPUHistMakerSpecialised hist_maker = GPUHistMakerSpecialised(); int constexpr kNId = 0; int constexpr kNRows = 16; int constexpr kNCols = 8; TrainParam param; std::vector> args = {}; param.InitAllowUnknown(args); // Initialize shard for (size_t i = 0; i < kNCols; ++i) { param.monotone_constraints.emplace_back(0); } hist_maker.shards_.resize(1); hist_maker.shards_[0].reset(new DeviceShard(0, 0, kNRows, param)); auto& shard = hist_maker.shards_.at(0); shard->ridx_segments.resize(3); // 3 nodes. shard->node_sum_gradients.resize(3); shard->ridx_segments[0] = Segment(0, kNRows); shard->ba.Allocate(0, &(shard->ridx), kNRows, &(shard->position), kNRows); shard->ellpack_matrix.row_stride = kNCols; thrust::sequence( thrust::device_pointer_cast(shard->ridx.Current()), thrust::device_pointer_cast(shard->ridx.Current() + shard->ridx.Size())); // Initialize GPUHistMaker hist_maker.param_ = param; RegTree tree; DeviceSplitCandidate candidate; candidate.Update(2, kLeftDir, 0.59, 4, // fvalue has to be equal to one of the cut field GradientPair(8.2, 2.8), GradientPair(6.3, 3.6), GPUTrainingParam(param)); ExpandEntry candidate_entry {0, 0, candidate, 0}; candidate_entry.nid = kNId; // Used to get bin_id in update position. common::HistCutMatrix cmat = GetHostCutMatrix(); hist_maker.hmat_ = cmat; MetaInfo info; info.num_row_ = kNRows; info.num_col_ = kNCols; info.num_nonzero_ = kNRows * kNCols; // Dense // Initialize gidx int n_bins = 24; int row_stride = kNCols; int num_symbols = n_bins + 1; size_t compressed_size_bytes = common::CompressedBufferWriter::CalculateBufferSize(row_stride * kNRows, num_symbols); shard->ba.Allocate(0, &(shard->gidx_buffer), compressed_size_bytes, &(shard->feature_segments), cmat.row_ptr.size(), &(shard->min_fvalue), cmat.min_val.size(), &(shard->gidx_fvalue_map), 24); dh::CopyVectorToDeviceSpan(shard->feature_segments, cmat.row_ptr); dh::CopyVectorToDeviceSpan(shard->gidx_fvalue_map, cmat.cut); shard->ellpack_matrix.feature_segments = shard->feature_segments; shard->ellpack_matrix.gidx_fvalue_map = shard->gidx_fvalue_map; dh::CopyVectorToDeviceSpan(shard->min_fvalue, cmat.min_val); shard->ellpack_matrix.min_fvalue = shard->min_fvalue; shard->ellpack_matrix.is_dense = true; common::CompressedBufferWriter wr(num_symbols); // gidx 14 should go right, 12 goes left std::vector h_gidx (kNRows * row_stride, 14); h_gidx[4] = 12; h_gidx[12] = 12; std::vector h_gidx_compressed (compressed_size_bytes); wr.Write(h_gidx_compressed.data(), h_gidx.begin(), h_gidx.end()); dh::CopyVectorToDeviceSpan(shard->gidx_buffer, h_gidx_compressed); shard->ellpack_matrix.gidx_iter = common::CompressedIterator( shard->gidx_buffer.data(), num_symbols); hist_maker.info_ = &info; hist_maker.ApplySplit(candidate_entry, &tree); hist_maker.UpdatePosition(candidate_entry, &tree); ASSERT_FALSE(tree[kNId].IsLeaf()); int left_nidx = tree[kNId].LeftChild(); int right_nidx = tree[kNId].RightChild(); ASSERT_EQ(shard->ridx_segments[left_nidx].begin, 0); ASSERT_EQ(shard->ridx_segments[left_nidx].end, 2); ASSERT_EQ(shard->ridx_segments[right_nidx].begin, 2); ASSERT_EQ(shard->ridx_segments[right_nidx].end, 16); } void TestSortPosition(const std::vector& position_in, int left_idx, int right_idx) { std::vector left_count = { std::count(position_in.begin(), position_in.end(), left_idx)}; thrust::device_vector d_left_count = left_count; thrust::device_vector position = position_in; thrust::device_vector position_out(position.size()); thrust::device_vector ridx(position.size()); thrust::sequence(ridx.begin(), ridx.end()); thrust::device_vector ridx_out(ridx.size()); dh::CubMemory tmp; SortPosition( &tmp, common::Span(position.data().get(), position.size()), common::Span(position_out.data().get(), position_out.size()), common::Span(ridx.data().get(), ridx.size()), common::Span(ridx_out.data().get(), ridx_out.size()), left_idx, right_idx, d_left_count.data().get(), nullptr); thrust::host_vector position_result = position_out; thrust::host_vector ridx_result = ridx_out; // Check position is sorted EXPECT_TRUE(std::is_sorted(position_result.begin(), position_result.end())); // Check row indices are sorted inside left and right segment EXPECT_TRUE( std::is_sorted(ridx_result.begin(), ridx_result.begin() + left_count[0])); EXPECT_TRUE( std::is_sorted(ridx_result.begin() + left_count[0], ridx_result.end())); // Check key value pairs are the same for (auto i = 0ull; i < ridx_result.size(); i++) { EXPECT_EQ(position_result[i], position_in[ridx_result[i]]); } } TEST(GpuHist, SortPosition) { TestSortPosition({1, 2, 1, 2, 1}, 1, 2); TestSortPosition({1, 1, 1, 1}, 1, 2); TestSortPosition({2, 2, 2, 2}, 1, 2); TestSortPosition({1, 2, 1, 2, 3}, 1, 2); } } // namespace tree } // namespace xgboost