/** * Copyright 2019-2023, XGBoost Contributors * \file adapter.h */ #ifndef XGBOOST_DATA_ADAPTER_H_ #define XGBOOST_DATA_ADAPTER_H_ #include #include #include // for size_t #include #include #include #include #include #include // std::move #include #include "../common/error_msg.h" // for MaxFeatureSize #include "../common/math.h" #include "array_interface.h" #include "xgboost/base.h" #include "xgboost/data.h" #include "xgboost/logging.h" #include "xgboost/span.h" #include "xgboost/string_view.h" namespace xgboost::data { /** External data formats should implement an adapter as below. The * adapter provides a uniform access to data outside xgboost, allowing * construction of DMatrix objects from a range of sources without duplicating * code. * * The adapter object is an iterator that returns batches of data. Each batch * contains a number of "lines". A line represents a set of elements from a * sparse input matrix, normally a row in the case of a CSR matrix or a column * for a CSC matrix. Typically in sparse matrix formats we can efficiently * access subsets of elements at a time, but cannot efficiently lookups elements * by random access, hence the "line" abstraction, allowing the sparse matrix to * return subsets of elements efficiently. Individual elements are described by * a COO tuple (row index, column index, value). * * This abstraction allows us to read through different sparse matrix formats * using the same interface. In particular we can write a DMatrix constructor * that uses the same code to construct itself from a CSR matrix, CSC matrix, * dense matrix, CSV, LIBSVM file, or potentially other formats. To see why this * is necessary, imagine we have 5 external matrix formats and 5 internal * DMatrix types where each DMatrix needs a custom constructor for each possible * input. The number of constructors is 5*5=25. Using an abstraction over the * input data types the number of constructors is reduced to 5, as each DMatrix * is oblivious to the external data format. Adding a new input source is simply * a case of implementing an adapter. * * Most of the below adapters do not need more than one batch as the data * originates from an in memory source. The file adapter does require batches to * avoid loading the entire file in memory. * * An important detail is empty row/column handling. Files loaded from disk do * not provide meta information about the number of rows/columns to expect, this * needs to be inferred during construction. Other sparse formats may specify a * number of rows/columns, but we can encounter entirely sparse rows or columns, * leading to disagreement between the inferred number and the meta-info * provided. To resolve this, adapters have methods specifying the number of * rows/columns expected, these methods may return zero where these values must * be inferred from data. A constructed DMatrix should agree with the input * source on numbers of rows/columns, appending empty rows if necessary. * */ /** \brief An adapter can return this value for number of rows or columns * indicating that this value is currently unknown and should be inferred while * passing over the data. */ constexpr size_t kAdapterUnknownSize = std::numeric_limits::max(); struct COOTuple { COOTuple() = default; XGBOOST_DEVICE COOTuple(size_t row_idx, size_t column_idx, float value) : row_idx(row_idx), column_idx(column_idx), value(value) {} size_t row_idx{0}; size_t column_idx{0}; float value{0}; }; struct IsValidFunctor { float missing; XGBOOST_DEVICE explicit IsValidFunctor(float missing) : missing(missing) {} XGBOOST_DEVICE bool operator()(float value) const { return !(common::CheckNAN(value) || value == missing); } XGBOOST_DEVICE bool operator()(const data::COOTuple& e) const { return !(common::CheckNAN(e.value) || e.value == missing); } XGBOOST_DEVICE bool operator()(const Entry& e) const { return !(common::CheckNAN(e.fvalue) || e.fvalue == missing); } }; namespace detail { /** * \brief Simplifies the use of DataIter when there is only one batch. */ template class SingleBatchDataIter : dmlc::DataIter { public: void BeforeFirst() override { counter_ = 0; } bool Next() override { if (counter_ == 0) { counter_++; return true; } return false; } private: int counter_{0}; }; /** \brief Indicates this data source cannot contain meta-info such as labels, * weights or qid. */ class NoMetaInfo { public: const float* Labels() const { return nullptr; } const float* Weights() const { return nullptr; } const uint64_t* Qid() const { return nullptr; } const float* BaseMargin() const { return nullptr; } }; }; // namespace detail class CSRAdapterBatch : public detail::NoMetaInfo { public: class Line { public: Line(size_t row_idx, size_t size, const unsigned* feature_idx, const float* values) : row_idx_(row_idx), size_(size), feature_idx_(feature_idx), values_(values) {} size_t Size() const { return size_; } COOTuple GetElement(size_t idx) const { return COOTuple{row_idx_, feature_idx_[idx], values_[idx]}; } private: size_t row_idx_; size_t size_; const unsigned* feature_idx_; const float* values_; }; CSRAdapterBatch(const size_t* row_ptr, const unsigned* feature_idx, const float* values, size_t num_rows, size_t, size_t) : row_ptr_(row_ptr), feature_idx_(feature_idx), values_(values), num_rows_(num_rows) {} const Line GetLine(size_t idx) const { size_t begin_offset = row_ptr_[idx]; size_t end_offset = row_ptr_[idx + 1]; return Line(idx, end_offset - begin_offset, &feature_idx_[begin_offset], &values_[begin_offset]); } size_t Size() const { return num_rows_; } static constexpr bool kIsRowMajor = true; private: const size_t* row_ptr_; const unsigned* feature_idx_; const float* values_; size_t num_rows_; }; class CSRAdapter : public detail::SingleBatchDataIter { public: CSRAdapter(const size_t* row_ptr, const unsigned* feature_idx, const float* values, size_t num_rows, size_t num_elements, size_t num_features) : batch_(row_ptr, feature_idx, values, num_rows, num_elements, num_features), num_rows_(num_rows), num_columns_(num_features) {} const CSRAdapterBatch& Value() const override { return batch_; } size_t NumRows() const { return num_rows_; } size_t NumColumns() const { return num_columns_; } private: CSRAdapterBatch batch_; size_t num_rows_; size_t num_columns_; }; class DenseAdapterBatch : public detail::NoMetaInfo { public: DenseAdapterBatch(const float* values, size_t num_rows, size_t num_features) : values_(values), num_rows_(num_rows), num_features_(num_features) {} private: class Line { public: Line(const float* values, size_t size, size_t row_idx) : row_idx_(row_idx), size_(size), values_(values) {} size_t Size() const { return size_; } COOTuple GetElement(size_t idx) const { return COOTuple{row_idx_, idx, values_[idx]}; } private: size_t row_idx_; size_t size_; const float* values_; }; public: size_t Size() const { return num_rows_; } const Line GetLine(size_t idx) const { return Line(values_ + idx * num_features_, num_features_, idx); } static constexpr bool kIsRowMajor = true; private: const float* values_; size_t num_rows_; size_t num_features_; }; class DenseAdapter : public detail::SingleBatchDataIter { public: DenseAdapter(const float* values, size_t num_rows, size_t num_features) : batch_(values, num_rows, num_features), num_rows_(num_rows), num_columns_(num_features) {} const DenseAdapterBatch& Value() const override { return batch_; } size_t NumRows() const { return num_rows_; } size_t NumColumns() const { return num_columns_; } private: DenseAdapterBatch batch_; size_t num_rows_; size_t num_columns_; }; class ArrayAdapterBatch : public detail::NoMetaInfo { public: static constexpr bool kIsRowMajor = true; private: ArrayInterface<2> array_interface_; class Line { ArrayInterface<2> array_interface_; size_t ridx_; public: Line(ArrayInterface<2> array_interface, size_t ridx) : array_interface_{std::move(array_interface)}, ridx_{ridx} {} size_t Size() const { return array_interface_.Shape(1); } COOTuple GetElement(size_t idx) const { return {ridx_, idx, array_interface_(ridx_, idx)}; } }; public: ArrayAdapterBatch() = default; Line const GetLine(size_t idx) const { return Line{array_interface_, idx}; } [[nodiscard]] std::size_t NumRows() const { return array_interface_.Shape(0); } [[nodiscard]] std::size_t NumCols() const { return array_interface_.Shape(1); } [[nodiscard]] std::size_t Size() const { return this->NumRows(); } explicit ArrayAdapterBatch(ArrayInterface<2> array_interface) : array_interface_{std::move(array_interface)} {} }; /** * Adapter for dense array on host, in Python that's `numpy.ndarray`. This is similar to * `DenseAdapter`, but supports __array_interface__ instead of raw pointers. An * advantage is this can handle various data type without making a copy. */ class ArrayAdapter : public detail::SingleBatchDataIter { public: explicit ArrayAdapter(StringView array_interface) { auto j = Json::Load(array_interface); array_interface_ = ArrayInterface<2>(get(j)); batch_ = ArrayAdapterBatch{array_interface_}; } [[nodiscard]] ArrayAdapterBatch const& Value() const override { return batch_; } [[nodiscard]] std::size_t NumRows() const { return array_interface_.Shape(0); } [[nodiscard]] std::size_t NumColumns() const { return array_interface_.Shape(1); } private: ArrayAdapterBatch batch_; ArrayInterface<2> array_interface_; }; class CSRArrayAdapterBatch : public detail::NoMetaInfo { ArrayInterface<1> indptr_; ArrayInterface<1> indices_; ArrayInterface<1> values_; bst_feature_t n_features_; class Line { ArrayInterface<1> indices_; ArrayInterface<1> values_; size_t ridx_; size_t offset_; public: Line(ArrayInterface<1> indices, ArrayInterface<1> values, size_t ridx, size_t offset) : indices_{std::move(indices)}, values_{std::move(values)}, ridx_{ridx}, offset_{offset} {} [[nodiscard]] COOTuple GetElement(std::size_t idx) const { return {ridx_, TypedIndex{indices_}(offset_ + idx), values_(offset_ + idx)}; } [[nodiscard]] std::size_t Size() const { return values_.Shape(0); } }; public: static constexpr bool kIsRowMajor = true; public: CSRArrayAdapterBatch() = default; CSRArrayAdapterBatch(ArrayInterface<1> indptr, ArrayInterface<1> indices, ArrayInterface<1> values, bst_feature_t n_features) : indptr_{std::move(indptr)}, indices_{std::move(indices)}, values_{std::move(values)}, n_features_{n_features} { } size_t NumRows() const { size_t size = indptr_.Shape(0); size = size == 0 ? 0 : size - 1; return size; } size_t NumCols() const { return n_features_; } size_t Size() const { return this->NumRows(); } Line const GetLine(size_t idx) const { auto begin_no_stride = TypedIndex{indptr_}(idx); auto end_no_stride = TypedIndex{indptr_}(idx + 1); auto indices = indices_; auto values = values_; // Slice indices and values, stride remains unchanged since this is slicing by // specific index. auto offset = indices.strides[0] * begin_no_stride; indices.shape[0] = end_no_stride - begin_no_stride; values.shape[0] = end_no_stride - begin_no_stride; return Line{indices, values, idx, offset}; } }; /** * Adapter for CSR array on host, in Python that's `scipy.sparse.csr_matrix`. This is * similar to `CSRAdapter`, but supports __array_interface__ instead of raw pointers. An * advantage is this can handle various data type without making a copy. */ class CSRArrayAdapter : public detail::SingleBatchDataIter { public: CSRArrayAdapter(StringView indptr, StringView indices, StringView values, size_t num_cols) : indptr_{indptr}, indices_{indices}, values_{values}, num_cols_{num_cols} { batch_ = CSRArrayAdapterBatch{indptr_, indices_, values_, static_cast(num_cols_)}; } CSRArrayAdapterBatch const& Value() const override { return batch_; } size_t NumRows() const { size_t size = indptr_.Shape(0); size = size == 0 ? 0 : size - 1; return size; } size_t NumColumns() const { return num_cols_; } private: CSRArrayAdapterBatch batch_; ArrayInterface<1> indptr_; ArrayInterface<1> indices_; ArrayInterface<1> values_; size_t num_cols_; }; class CSCAdapterBatch : public detail::NoMetaInfo { public: CSCAdapterBatch(const size_t* col_ptr, const unsigned* row_idx, const float* values, size_t num_features) : col_ptr_(col_ptr), row_idx_(row_idx), values_(values), num_features_(num_features) {} private: class Line { public: Line(size_t col_idx, size_t size, const unsigned* row_idx, const float* values) : col_idx_(col_idx), size_(size), row_idx_(row_idx), values_(values) {} size_t Size() const { return size_; } COOTuple GetElement(size_t idx) const { return COOTuple{row_idx_[idx], col_idx_, values_[idx]}; } private: size_t col_idx_; size_t size_; const unsigned* row_idx_; const float* values_; }; public: size_t Size() const { return num_features_; } const Line GetLine(size_t idx) const { size_t begin_offset = col_ptr_[idx]; size_t end_offset = col_ptr_[idx + 1]; return Line(idx, end_offset - begin_offset, &row_idx_[begin_offset], &values_[begin_offset]); } static constexpr bool kIsRowMajor = false; private: const size_t* col_ptr_; const unsigned* row_idx_; const float* values_; size_t num_features_; }; class CSCAdapter : public detail::SingleBatchDataIter { public: CSCAdapter(const size_t* col_ptr, const unsigned* row_idx, const float* values, size_t num_features, size_t num_rows) : batch_(col_ptr, row_idx, values, num_features), num_rows_(num_rows), num_columns_(num_features) {} const CSCAdapterBatch& Value() const override { return batch_; } // JVM package sends 0 as unknown size_t NumRows() const { return num_rows_ == 0 ? kAdapterUnknownSize : num_rows_; } size_t NumColumns() const { return num_columns_; } private: CSCAdapterBatch batch_; size_t num_rows_; size_t num_columns_; }; class CSCArrayAdapterBatch : public detail::NoMetaInfo { ArrayInterface<1> indptr_; ArrayInterface<1> indices_; ArrayInterface<1> values_; class Line { std::size_t column_idx_; ArrayInterface<1> row_idx_; ArrayInterface<1> values_; std::size_t offset_; public: Line(std::size_t idx, ArrayInterface<1> row_idx, ArrayInterface<1> values, std::size_t offset) : column_idx_{idx}, row_idx_{std::move(row_idx)}, values_{std::move(values)}, offset_{offset} {} std::size_t Size() const { return values_.Shape(0); } COOTuple GetElement(std::size_t idx) const { return {TypedIndex{row_idx_}(offset_ + idx), column_idx_, values_(offset_ + idx)}; } }; public: static constexpr bool kIsRowMajor = false; CSCArrayAdapterBatch(ArrayInterface<1> indptr, ArrayInterface<1> indices, ArrayInterface<1> values) : indptr_{std::move(indptr)}, indices_{std::move(indices)}, values_{std::move(values)} {} std::size_t Size() const { return indptr_.n - 1; } Line GetLine(std::size_t idx) const { auto begin_no_stride = TypedIndex{indptr_}(idx); auto end_no_stride = TypedIndex{indptr_}(idx + 1); auto indices = indices_; auto values = values_; // Slice indices and values, stride remains unchanged since this is slicing by // specific index. auto offset = indices.strides[0] * begin_no_stride; indices.shape[0] = end_no_stride - begin_no_stride; values.shape[0] = end_no_stride - begin_no_stride; return Line{idx, indices, values, offset}; } }; /** * \brief CSC adapter with support for array interface. */ class CSCArrayAdapter : public detail::SingleBatchDataIter { ArrayInterface<1> indptr_; ArrayInterface<1> indices_; ArrayInterface<1> values_; size_t num_rows_; CSCArrayAdapterBatch batch_; public: CSCArrayAdapter(StringView indptr, StringView indices, StringView values, std::size_t num_rows) : indptr_{indptr}, indices_{indices}, values_{values}, num_rows_{num_rows}, batch_{CSCArrayAdapterBatch{indptr_, indices_, values_}} {} // JVM package sends 0 as unknown [[nodiscard]] std::size_t NumRows() const { return num_rows_ == 0 ? kAdapterUnknownSize : num_rows_; } [[nodiscard]] std::size_t NumColumns() const { return indptr_.n - 1; } [[nodiscard]] const CSCArrayAdapterBatch& Value() const override { return batch_; } }; class DataTableAdapterBatch : public detail::NoMetaInfo { enum class DTType : std::uint8_t { kFloat32 = 0, kFloat64 = 1, kBool8 = 2, kInt32 = 3, kInt8 = 4, kInt16 = 5, kInt64 = 6, kUnknown = 7 }; static DTType DTGetType(std::string type_string) { if (type_string == "float32") { return DTType::kFloat32; } else if (type_string == "float64") { return DTType::kFloat64; } else if (type_string == "bool8") { return DTType::kBool8; } else if (type_string == "int32") { return DTType::kInt32; } else if (type_string == "int8") { return DTType::kInt8; } else if (type_string == "int16") { return DTType::kInt16; } else if (type_string == "int64") { return DTType::kInt64; } else { LOG(FATAL) << "Unknown data table type."; return DTType::kUnknown; } } public: DataTableAdapterBatch(void const* const* const data, char const* const* feature_stypes, std::size_t num_rows, std::size_t num_features) : data_(data), num_rows_(num_rows) { CHECK(feature_types_.empty()); std::transform(feature_stypes, feature_stypes + num_features, std::back_inserter(feature_types_), [](char const* stype) { return DTGetType(stype); }); } private: class Line { std::size_t row_idx_; void const* const* const data_; std::vector const& feature_types_; float DTGetValue(void const* column, DTType dt_type, std::size_t ridx) const { float missing = std::numeric_limits::quiet_NaN(); switch (dt_type) { case DTType::kFloat32: { float val = reinterpret_cast(column)[ridx]; return std::isfinite(val) ? val : missing; } case DTType::kFloat64: { double val = reinterpret_cast(column)[ridx]; return std::isfinite(val) ? static_cast(val) : missing; } case DTType::kBool8: { bool val = reinterpret_cast(column)[ridx]; return static_cast(val); } case DTType::kInt32: { int32_t val = reinterpret_cast(column)[ridx]; return val != (-2147483647 - 1) ? static_cast(val) : missing; } case DTType::kInt8: { int8_t val = reinterpret_cast(column)[ridx]; return val != -128 ? static_cast(val) : missing; } case DTType::kInt16: { int16_t val = reinterpret_cast(column)[ridx]; return val != -32768 ? static_cast(val) : missing; } case DTType::kInt64: { int64_t val = reinterpret_cast(column)[ridx]; return val != -9223372036854775807 - 1 ? static_cast(val) : missing; } default: { LOG(FATAL) << "Unknown data table type."; return 0.0f; } } } public: Line(std::size_t ridx, void const* const* const data, std::vector const& ft) : row_idx_{ridx}, data_{data}, feature_types_{ft} {} [[nodiscard]] std::size_t Size() const { return feature_types_.size(); } [[nodiscard]] COOTuple GetElement(std::size_t idx) const { return COOTuple{row_idx_, idx, DTGetValue(data_[idx], feature_types_[idx], row_idx_)}; } }; public: [[nodiscard]] size_t Size() const { return num_rows_; } [[nodiscard]] const Line GetLine(std::size_t ridx) const { return {ridx, data_, feature_types_}; } static constexpr bool kIsRowMajor = true; private: void const* const* const data_; std::vector feature_types_; std::size_t num_rows_; }; class DataTableAdapter : public detail::SingleBatchDataIter { public: DataTableAdapter(void** data, const char** feature_stypes, std::size_t num_rows, std::size_t num_features) : batch_(data, feature_stypes, num_rows, num_features), num_rows_(num_rows), num_columns_(num_features) {} [[nodiscard]] const DataTableAdapterBatch& Value() const override { return batch_; } [[nodiscard]] std::size_t NumRows() const { return num_rows_; } [[nodiscard]] std::size_t NumColumns() const { return num_columns_; } private: DataTableAdapterBatch batch_; std::size_t num_rows_; std::size_t num_columns_; }; class ColumnarAdapterBatch : public detail::NoMetaInfo { common::Span> columns_; class Line { common::Span> const& columns_; std::size_t ridx_; public: explicit Line(common::Span> const& columns, std::size_t ridx) : columns_{columns}, ridx_{ridx} {} [[nodiscard]] std::size_t Size() const { return columns_.empty() ? 0 : columns_.size(); } [[nodiscard]] COOTuple GetElement(std::size_t idx) const { return {ridx_, idx, columns_[idx](ridx_)}; } }; public: ColumnarAdapterBatch() = default; explicit ColumnarAdapterBatch(common::Span> columns) : columns_{columns} {} [[nodiscard]] Line GetLine(std::size_t ridx) const { return Line{columns_, ridx}; } [[nodiscard]] std::size_t Size() const { return columns_.empty() ? 0 : columns_.front().Shape(0); } [[nodiscard]] std::size_t NumCols() const { return columns_.empty() ? 0 : columns_.size(); } [[nodiscard]] std::size_t NumRows() const { return this->Size(); } static constexpr bool kIsRowMajor = true; }; class ColumnarAdapter : public detail::SingleBatchDataIter { std::vector> columns_; ColumnarAdapterBatch batch_; public: explicit ColumnarAdapter(StringView columns) { auto jarray = Json::Load(columns); CHECK(IsA(jarray)); auto const& array = get(jarray); for (auto col : array) { columns_.emplace_back(get(col)); } bool consistent = columns_.empty() || std::all_of(columns_.cbegin(), columns_.cend(), [&](ArrayInterface<1, false> const& array) { return array.Shape(0) == columns_[0].Shape(0); }); CHECK(consistent) << "Size of columns should be the same."; batch_ = ColumnarAdapterBatch{columns_}; } [[nodiscard]] ColumnarAdapterBatch const& Value() const override { return batch_; } [[nodiscard]] std::size_t NumRows() const { if (!columns_.empty()) { return columns_.front().shape[0]; } return 0; } [[nodiscard]] std::size_t NumColumns() const { if (!columns_.empty()) { return columns_.size(); } return 0; } }; class FileAdapterBatch { public: class Line { public: Line(size_t row_idx, const uint32_t *feature_idx, const float *value, size_t size) : row_idx_(row_idx), feature_idx_(feature_idx), value_(value), size_(size) {} size_t Size() { return size_; } COOTuple GetElement(size_t idx) { float fvalue = value_ == nullptr ? 1.0f : value_[idx]; return COOTuple{row_idx_, feature_idx_[idx], fvalue}; } private: size_t row_idx_; const uint32_t* feature_idx_; const float* value_; size_t size_; }; FileAdapterBatch(const dmlc::RowBlock* block, size_t row_offset) : block_(block), row_offset_(row_offset) {} Line GetLine(size_t idx) const { auto begin = block_->offset[idx]; auto end = block_->offset[idx + 1]; return Line{idx + row_offset_, &block_->index[begin], &block_->value[begin], end - begin}; } const float* Labels() const { return block_->label; } const float* Weights() const { return block_->weight; } const uint64_t* Qid() const { return block_->qid; } const float* BaseMargin() const { return nullptr; } size_t Size() const { return block_->size; } static constexpr bool kIsRowMajor = true; private: const dmlc::RowBlock* block_; size_t row_offset_; }; /** \brief FileAdapter wraps dmlc::parser to read files and provide access in a * common interface. */ class FileAdapter : dmlc::DataIter { public: explicit FileAdapter(dmlc::Parser* parser) : parser_(parser) {} const FileAdapterBatch& Value() const override { return *batch_.get(); } void BeforeFirst() override { batch_.reset(); parser_->BeforeFirst(); row_offset_ = 0; } bool Next() override { bool next = parser_->Next(); batch_.reset(new FileAdapterBatch(&parser_->Value(), row_offset_)); row_offset_ += parser_->Value().size; return next; } // Indicates a number of rows/columns must be inferred size_t NumRows() const { return kAdapterUnknownSize; } size_t NumColumns() const { return kAdapterUnknownSize; } private: size_t row_offset_{0}; std::unique_ptr batch_; dmlc::Parser* parser_; }; /** * @brief Data iterator that takes callback to return data, used in JVM package for accepting data * iterator. */ template class IteratorAdapter : public dmlc::DataIter { public: IteratorAdapter(DataIterHandle data_handle, XGBCallbackDataIterNext* next_callback) : columns_{data::kAdapterUnknownSize}, data_handle_(data_handle), next_callback_(next_callback) {} // override functions void BeforeFirst() override { CHECK(at_first_) << "Cannot reset IteratorAdapter"; } [[nodiscard]] bool Next() override; [[nodiscard]] FileAdapterBatch const& Value() const override { return *batch_.get(); } // callback to set the data void SetData(const XGBoostBatchCSR& batch) { offset_.clear(); label_.clear(); weight_.clear(); index_.clear(); value_.clear(); offset_.insert(offset_.end(), batch.offset, batch.offset + batch.size + 1); if (batch.label != nullptr) { label_.insert(label_.end(), batch.label, batch.label + batch.size); } if (batch.weight != nullptr) { weight_.insert(weight_.end(), batch.weight, batch.weight + batch.size); } if (batch.index != nullptr) { index_.insert(index_.end(), batch.index + offset_[0], batch.index + offset_.back()); } if (batch.value != nullptr) { value_.insert(value_.end(), batch.value + offset_[0], batch.value + offset_.back()); } if (offset_[0] != 0) { size_t base = offset_[0]; for (size_t &item : offset_) { item -= base; } } CHECK(columns_ == data::kAdapterUnknownSize || columns_ == batch.columns) << "Number of columns between batches changed from " << columns_ << " to " << batch.columns; columns_ = batch.columns; block_.size = batch.size; block_.offset = dmlc::BeginPtr(offset_); block_.label = dmlc::BeginPtr(label_); block_.weight = dmlc::BeginPtr(weight_); block_.qid = nullptr; block_.field = nullptr; block_.index = dmlc::BeginPtr(index_); block_.value = dmlc::BeginPtr(value_); batch_ = std::make_unique(&block_, row_offset_); row_offset_ += offset_.size() - 1; } [[nodiscard]] std::size_t NumColumns() const { return columns_; } [[nodiscard]] std::size_t NumRows() const { return kAdapterUnknownSize; } private: std::vector offset_; std::vector label_; std::vector weight_; std::vector index_; std::vector value_; size_t columns_; size_t row_offset_{0}; // at the beginning. bool at_first_{true}; // handle to the iterator, DataIterHandle data_handle_; // call back to get the data. XGBCallbackDataIterNext *next_callback_; // internal Rowblock dmlc::RowBlock block_; std::unique_ptr batch_; }; class SparsePageAdapterBatch { HostSparsePageView page_; public: struct Line { Entry const* inst; size_t n; bst_row_t ridx; COOTuple GetElement(size_t idx) const { return {ridx, inst[idx].index, inst[idx].fvalue}; } size_t Size() const { return n; } }; explicit SparsePageAdapterBatch(HostSparsePageView page) : page_{std::move(page)} {} Line GetLine(size_t ridx) const { return Line{page_[ridx].data(), page_[ridx].size(), ridx}; } size_t Size() const { return page_.Size(); } }; } // namespace xgboost::data #endif // XGBOOST_DATA_ADAPTER_H_