% Generated by roxygen2 (4.1.0): do not edit by hand % Please edit documentation in R/xgb.importance.R \name{xgb.importance} \alias{xgb.importance} \title{Show importance of features in a model} \usage{ xgb.importance(feature_names = NULL, filename_dump = NULL) } \arguments{ \item{feature_names}{names of each feature as a character vector. Can be extracted from a sparse matrix (see example). If model dump already contains feature names, this argument should be \code{NULL}.} \item{filename_dump}{the path to the text file storing the model.} } \description{ Read a xgboost model in text file format. Can be tree or linear model (text dump of linear model are only supported in dev version of Xgboost for now). } \details{ Return a data.table of the features with their weight. #' } \examples{ data(agaricus.train, package='xgboost') data(agaricus.test, package='xgboost') #Both dataset are list with two items, a sparse matrix and labels (labels = outcome column which will be learned). #Each column of the sparse Matrix is a feature in one hot encoding format. train <- agaricus.train test <- agaricus.test bst <- xgboost(data = train$data, label = train$label, max.depth = 2, eta = 1, nround = 2,objective = "binary:logistic") xgb.dump(bst, 'xgb.model.dump', with.stats = T) #agaricus.test$data@Dimnames[[2]] represents the column names of the sparse matrix. xgb.importance(agaricus.test$data@Dimnames[[2]], 'xgb.model.dump') }