/** * Copyright 2021-2024, XGBoost contributors. */ #include #include "../../../src/tree/common_row_partitioner.h" #include "../collective/test_worker.h" // for TestDistributedGlobal #include "../helpers.h" #include "test_partitioner.h" namespace xgboost::tree { namespace { std::vector GenerateHess(size_t n_samples) { auto grad = GenerateRandomGradients(n_samples); std::vector hess(grad.Size()); std::transform(grad.HostVector().cbegin(), grad.HostVector().cend(), hess.begin(), [](auto gpair) { return gpair.GetHess(); }); return hess; } } // anonymous namespace TEST(Approx, Partitioner) { size_t n_samples = 1024, n_features = 1, base_rowid = 0; Context ctx; ctx.InitAllowUnknown(Args{}); CommonRowPartitioner partitioner{&ctx, n_samples, base_rowid, false}; ASSERT_EQ(partitioner.base_rowid, base_rowid); ASSERT_EQ(partitioner.Size(), 1); ASSERT_EQ(partitioner.Partitions()[0].Size(), n_samples); auto const Xy = RandomDataGenerator{n_samples, n_features, 0}.GenerateDMatrix(true); auto hess = GenerateHess(n_samples); std::vector candidates{{0, 0}}; candidates.front().split.loss_chg = 0.4; for (auto const& page : Xy->GetBatches(&ctx, {64, hess, true})) { bst_feature_t const split_ind = 0; { auto min_value = page.cut.MinValues()[split_ind]; RegTree tree; CommonRowPartitioner partitioner{&ctx, n_samples, base_rowid, false}; GetSplit(&tree, min_value, &candidates); partitioner.UpdatePosition(&ctx, page, candidates, &tree); ASSERT_EQ(partitioner.Size(), 3); ASSERT_EQ(partitioner[1].Size(), 0); ASSERT_EQ(partitioner[2].Size(), n_samples); } { CommonRowPartitioner partitioner{&ctx, n_samples, base_rowid, false}; auto ptr = page.cut.Ptrs()[split_ind + 1]; float split_value = page.cut.Values().at(ptr / 2); RegTree tree; GetSplit(&tree, split_value, &candidates); partitioner.UpdatePosition(&ctx, page, candidates, &tree); { auto left_nidx = tree[RegTree::kRoot].LeftChild(); auto const& elem = partitioner[left_nidx]; ASSERT_LT(elem.Size(), n_samples); ASSERT_GT(elem.Size(), 1); for (auto& it : elem) { auto value = page.cut.Values().at(page.index[it]); ASSERT_LE(value, split_value); } } { auto right_nidx = tree[RegTree::kRoot].RightChild(); auto const& elem = partitioner[right_nidx]; for (auto& it : elem) { auto value = page.cut.Values().at(page.index[it]); ASSERT_GT(value, split_value) << it; } } } } } namespace { void TestColumnSplitPartitioner(size_t n_samples, size_t base_rowid, std::shared_ptr Xy, std::vector* hess, float min_value, float mid_value, CommonRowPartitioner const& expected_mid_partitioner) { auto dmat = std::unique_ptr{Xy->SliceCol(collective::GetWorldSize(), collective::GetRank())}; std::vector candidates{{0, 0}}; candidates.front().split.loss_chg = 0.4; Context ctx; ctx.InitAllowUnknown(Args{}); for (auto const& page : dmat->GetBatches(&ctx, {64, *hess, true})) { { RegTree tree; CommonRowPartitioner partitioner{&ctx, n_samples, base_rowid, true}; GetSplit(&tree, min_value, &candidates); partitioner.UpdatePosition(&ctx, page, candidates, &tree); ASSERT_EQ(partitioner.Size(), 3); ASSERT_EQ(partitioner[1].Size(), 0); ASSERT_EQ(partitioner[2].Size(), n_samples); } { CommonRowPartitioner partitioner{&ctx, n_samples, base_rowid, true}; RegTree tree; GetSplit(&tree, mid_value, &candidates); partitioner.UpdatePosition(&ctx, page, candidates, &tree); { auto left_nidx = tree[RegTree::kRoot].LeftChild(); auto const& elem = partitioner[left_nidx]; ASSERT_LT(elem.Size(), n_samples); ASSERT_GT(elem.Size(), 1); auto const& expected_elem = expected_mid_partitioner[left_nidx]; ASSERT_EQ(elem.Size(), expected_elem.Size()); for (auto it = elem.begin(), eit = expected_elem.begin(); it != elem.end(); ++it, ++eit) { ASSERT_EQ(*it, *eit); } } { auto right_nidx = tree[RegTree::kRoot].RightChild(); auto const& elem = partitioner[right_nidx]; auto const& expected_elem = expected_mid_partitioner[right_nidx]; ASSERT_EQ(elem.Size(), expected_elem.Size()); for (auto it = elem.begin(), eit = expected_elem.begin(); it != elem.end(); ++it, ++eit) { ASSERT_EQ(*it, *eit); } } } } } } // anonymous namespace TEST(Approx, PartitionerColSplit) { size_t n_samples = 1024, n_features = 16, base_rowid = 0; auto const Xy = RandomDataGenerator{n_samples, n_features, 0}.GenerateDMatrix(true); auto hess = GenerateHess(n_samples); std::vector candidates{{0, 0}}; candidates.front().split.loss_chg = 0.4; float min_value, mid_value; Context ctx; ctx.InitAllowUnknown(Args{}); CommonRowPartitioner mid_partitioner{&ctx, n_samples, base_rowid, false}; for (auto const& page : Xy->GetBatches(&ctx, {64, hess, true})) { bst_feature_t const split_ind = 0; min_value = page.cut.MinValues()[split_ind]; auto ptr = page.cut.Ptrs()[split_ind + 1]; mid_value = page.cut.Values().at(ptr / 2); RegTree tree; GetSplit(&tree, mid_value, &candidates); mid_partitioner.UpdatePosition(&ctx, page, candidates, &tree); } auto constexpr kWorkers = 4; collective::TestDistributedGlobal(kWorkers, [&] { TestColumnSplitPartitioner(n_samples, base_rowid, Xy, &hess, min_value, mid_value, mid_partitioner); }); } } // namespace xgboost::tree