#include #include "../../../../src/tree/gpu_hist/evaluate_splits.cuh" #include "../../helpers.h" #include "../../histogram_helpers.h" namespace xgboost { namespace tree { namespace { auto ZeroParam() { auto args = Args{{"min_child_weight", "0"}, {"lambda", "0"}}; TrainParam tparam; tparam.UpdateAllowUnknown(args); return tparam; } } // anonymous namespace TEST(GpuHist, EvaluateSingleSplit) { thrust::device_vector out_splits(1); GradientPair parent_sum(0.0, 1.0); TrainParam tparam = ZeroParam(); GPUTrainingParam param{tparam}; thrust::device_vector feature_set = std::vector{0, 1}; thrust::device_vector feature_segments = std::vector{0, 2, 4}; thrust::device_vector feature_values = std::vector{1.0, 2.0, 11.0, 12.0}; thrust::device_vector feature_min_values = std::vector{0.0, 0.0}; // Setup gradients so that second feature gets higher gain thrust::device_vector feature_histogram = std::vector{ {-0.5, 0.5}, {0.5, 0.5}, {-1.0, 0.5}, {1.0, 0.5}}; thrust::device_vector monotonic_constraints(feature_set.size(), 0); EvaluateSplitInputs input{1, parent_sum, param, dh::ToSpan(feature_set), dh::ToSpan(feature_segments), dh::ToSpan(feature_values), dh::ToSpan(feature_min_values), dh::ToSpan(feature_histogram)}; TreeEvaluator tree_evaluator(tparam, feature_min_values.size(), 0); auto evaluator = tree_evaluator.GetEvaluator(); EvaluateSingleSplit(dh::ToSpan(out_splits), evaluator, input); DeviceSplitCandidate result = out_splits[0]; EXPECT_EQ(result.findex, 1); EXPECT_EQ(result.fvalue, 11.0); EXPECT_FLOAT_EQ(result.left_sum.GetGrad() + result.right_sum.GetGrad(), parent_sum.GetGrad()); EXPECT_FLOAT_EQ(result.left_sum.GetHess() + result.right_sum.GetHess(), parent_sum.GetHess()); } TEST(GpuHist, EvaluateSingleSplitMissing) { thrust::device_vector out_splits(1); GradientPair parent_sum(1.0, 1.5); TrainParam tparam = ZeroParam(); GPUTrainingParam param{tparam}; thrust::device_vector feature_set = std::vector{0}; thrust::device_vector feature_segments = std::vector{0, 2}; thrust::device_vector feature_values = std::vector{1.0, 2.0}; thrust::device_vector feature_min_values = std::vector{0.0}; thrust::device_vector feature_histogram = std::vector{{-0.5, 0.5}, {0.5, 0.5}}; thrust::device_vector monotonic_constraints(feature_set.size(), 0); EvaluateSplitInputs input{1, parent_sum, param, dh::ToSpan(feature_set), dh::ToSpan(feature_segments), dh::ToSpan(feature_values), dh::ToSpan(feature_min_values), dh::ToSpan(feature_histogram)}; TreeEvaluator tree_evaluator(tparam, feature_set.size(), 0); auto evaluator = tree_evaluator.GetEvaluator(); EvaluateSingleSplit(dh::ToSpan(out_splits), evaluator, input); DeviceSplitCandidate result = out_splits[0]; EXPECT_EQ(result.findex, 0); EXPECT_EQ(result.fvalue, 1.0); EXPECT_EQ(result.dir, kRightDir); EXPECT_EQ(result.left_sum, GradientPair(-0.5, 0.5)); EXPECT_EQ(result.right_sum, GradientPair(1.5, 1.0)); } TEST(GpuHist, EvaluateSingleSplitEmpty) { DeviceSplitCandidate nonzeroed; nonzeroed.findex = 1; nonzeroed.loss_chg = 1.0; thrust::device_vector out_split(1); out_split[0] = nonzeroed; TrainParam tparam = ZeroParam(); TreeEvaluator tree_evaluator(tparam, 1, 0); auto evaluator = tree_evaluator.GetEvaluator(); EvaluateSingleSplit(dh::ToSpan(out_split), evaluator, EvaluateSplitInputs{}); DeviceSplitCandidate result = out_split[0]; EXPECT_EQ(result.findex, -1); EXPECT_LT(result.loss_chg, 0.0f); } // Feature 0 has a better split, but the algorithm must select feature 1 TEST(GpuHist, EvaluateSingleSplitFeatureSampling) { thrust::device_vector out_splits(1); GradientPair parent_sum(0.0, 1.0); TrainParam tparam = ZeroParam(); tparam.UpdateAllowUnknown(Args{}); GPUTrainingParam param{tparam}; thrust::device_vector feature_set = std::vector{1}; thrust::device_vector feature_segments = std::vector{0, 2, 4}; thrust::device_vector feature_values = std::vector{1.0, 2.0, 11.0, 12.0}; thrust::device_vector feature_min_values = std::vector{0.0, 10.0}; thrust::device_vector feature_histogram = std::vector{ {-10.0, 0.5}, {10.0, 0.5}, {-0.5, 0.5}, {0.5, 0.5}}; thrust::device_vector monotonic_constraints(2, 0); EvaluateSplitInputs input{1, parent_sum, param, dh::ToSpan(feature_set), dh::ToSpan(feature_segments), dh::ToSpan(feature_values), dh::ToSpan(feature_min_values), dh::ToSpan(feature_histogram)}; TreeEvaluator tree_evaluator(tparam, feature_min_values.size(), 0); auto evaluator = tree_evaluator.GetEvaluator(); EvaluateSingleSplit(dh::ToSpan(out_splits), evaluator, input); DeviceSplitCandidate result = out_splits[0]; EXPECT_EQ(result.findex, 1); EXPECT_EQ(result.fvalue, 11.0); EXPECT_EQ(result.left_sum, GradientPair(-0.5, 0.5)); EXPECT_EQ(result.right_sum, GradientPair(0.5, 0.5)); } // Features 0 and 1 have identical gain, the algorithm must select 0 TEST(GpuHist, EvaluateSingleSplitBreakTies) { thrust::device_vector out_splits(1); GradientPair parent_sum(0.0, 1.0); TrainParam tparam = ZeroParam(); tparam.UpdateAllowUnknown(Args{}); GPUTrainingParam param{tparam}; thrust::device_vector feature_set = std::vector{0, 1}; thrust::device_vector feature_segments = std::vector{0, 2, 4}; thrust::device_vector feature_values = std::vector{1.0, 2.0, 11.0, 12.0}; thrust::device_vector feature_min_values = std::vector{0.0, 10.0}; thrust::device_vector feature_histogram = std::vector{ {-0.5, 0.5}, {0.5, 0.5}, {-0.5, 0.5}, {0.5, 0.5}}; thrust::device_vector monotonic_constraints(2, 0); EvaluateSplitInputs input{1, parent_sum, param, dh::ToSpan(feature_set), dh::ToSpan(feature_segments), dh::ToSpan(feature_values), dh::ToSpan(feature_min_values), dh::ToSpan(feature_histogram)}; TreeEvaluator tree_evaluator(tparam, feature_min_values.size(), 0); auto evaluator = tree_evaluator.GetEvaluator(); EvaluateSingleSplit(dh::ToSpan(out_splits), evaluator, input); DeviceSplitCandidate result = out_splits[0]; EXPECT_EQ(result.findex, 0); EXPECT_EQ(result.fvalue, 1.0); } TEST(GpuHist, EvaluateSplits) { thrust::device_vector out_splits(2); GradientPair parent_sum(0.0, 1.0); TrainParam tparam = ZeroParam(); tparam.UpdateAllowUnknown(Args{}); GPUTrainingParam param{tparam}; thrust::device_vector feature_set = std::vector{0, 1}; thrust::device_vector feature_segments = std::vector{0, 2, 4}; thrust::device_vector feature_values = std::vector{1.0, 2.0, 11.0, 12.0}; thrust::device_vector feature_min_values = std::vector{0.0, 0.0}; thrust::device_vector feature_histogram_left = std::vector{ {-0.5, 0.5}, {0.5, 0.5}, {-1.0, 0.5}, {1.0, 0.5}}; thrust::device_vector feature_histogram_right = std::vector{ {-1.0, 0.5}, {1.0, 0.5}, {-0.5, 0.5}, {0.5, 0.5}}; thrust::device_vector monotonic_constraints(feature_set.size(), 0); EvaluateSplitInputs input_left{ 1, parent_sum, param, dh::ToSpan(feature_set), dh::ToSpan(feature_segments), dh::ToSpan(feature_values), dh::ToSpan(feature_min_values), dh::ToSpan(feature_histogram_left)}; EvaluateSplitInputs input_right{ 2, parent_sum, param, dh::ToSpan(feature_set), dh::ToSpan(feature_segments), dh::ToSpan(feature_values), dh::ToSpan(feature_min_values), dh::ToSpan(feature_histogram_right)}; TreeEvaluator tree_evaluator(tparam, feature_min_values.size(), 0); auto evaluator = tree_evaluator.GetEvaluator(); EvaluateSplits(dh::ToSpan(out_splits), evaluator, input_left, input_right); DeviceSplitCandidate result_left = out_splits[0]; EXPECT_EQ(result_left.findex, 1); EXPECT_EQ(result_left.fvalue, 11.0); DeviceSplitCandidate result_right = out_splits[1]; EXPECT_EQ(result_right.findex, 0); EXPECT_EQ(result_right.fvalue, 1.0); } } // namespace tree } // namespace xgboost