""" Example of training with Dask on GPU ==================================== """ from dask_cuda import LocalCUDACluster import dask_cudf from dask.distributed import Client from dask import array as da from dask import dataframe as dd import xgboost as xgb from xgboost import dask as dxgb from xgboost.dask import DaskDMatrix def using_dask_matrix(client: Client, X, y): # DaskDMatrix acts like normal DMatrix, works as a proxy for local # DMatrix scatter around workers. dtrain = DaskDMatrix(client, X, y) # Use train method from xgboost.dask instead of xgboost. This # distributed version of train returns a dictionary containing the # resulting booster and evaluation history obtained from # evaluation metrics. output = xgb.dask.train(client, {'verbosity': 2, # Golden line for GPU training 'tree_method': 'gpu_hist'}, dtrain, num_boost_round=4, evals=[(dtrain, 'train')]) bst = output['booster'] history = output['history'] # you can pass output directly into `predict` too. prediction = xgb.dask.predict(client, bst, dtrain) print('Evaluation history:', history) return prediction def using_quantile_device_dmatrix(client: Client, X, y): '''`DaskDeviceQuantileDMatrix` is a data type specialized for `gpu_hist`, tree method that reduces memory overhead. When training on GPU pipeline, it's preferred over `DaskDMatrix`. .. versionadded:: 1.2.0 ''' # Input must be on GPU for `DaskDeviceQuantileDMatrix`. X = dask_cudf.from_dask_dataframe(dd.from_dask_array(X)) y = dask_cudf.from_dask_dataframe(dd.from_dask_array(y)) # `DaskDeviceQuantileDMatrix` is used instead of `DaskDMatrix`, be careful # that it can not be used for anything else other than training. dtrain = dxgb.DaskQuantileDMatrix(client, X, y) output = xgb.dask.train(client, {'verbosity': 2, 'tree_method': 'gpu_hist'}, dtrain, num_boost_round=4) prediction = xgb.dask.predict(client, output, X) return prediction if __name__ == '__main__': # `LocalCUDACluster` is used for assigning GPU to XGBoost processes. Here # `n_workers` represents the number of GPUs since we use one GPU per worker # process. with LocalCUDACluster(n_workers=2, threads_per_worker=4) as cluster: with Client(cluster) as client: # generate some random data for demonstration m = 100000 n = 100 X = da.random.random(size=(m, n), chunks=10000) y = da.random.random(size=(m, ), chunks=10000) print('Using DaskQuantileDMatrix') from_ddqdm = using_quantile_device_dmatrix(client, X, y) print('Using DMatrix') from_dmatrix = using_dask_matrix(client, X, y)