import json import os import sys import tempfile from concurrent.futures import ThreadPoolExecutor import numpy as np import pytest import xgboost as xgb from xgboost import testing as tm from xgboost.testing.ranking import run_ranking_categorical, run_ranking_qid_df sys.path.append("tests/python") import test_with_sklearn as twskl # noqa pytestmark = pytest.mark.skipif(**tm.no_sklearn()) rng = np.random.RandomState(1994) def test_gpu_binary_classification(): from sklearn.datasets import load_digits from sklearn.model_selection import KFold digits = load_digits(n_class=2) y = digits["target"] X = digits["data"] kf = KFold(n_splits=2, shuffle=True, random_state=rng) for cls in (xgb.XGBClassifier, xgb.XGBRFClassifier): for train_index, test_index in kf.split(X, y): xgb_model = cls( random_state=42, tree_method="gpu_hist", n_estimators=4, gpu_id="0" ).fit(X[train_index], y[train_index]) preds = xgb_model.predict(X[test_index]) labels = y[test_index] err = sum( 1 for i in range(len(preds)) if int(preds[i] > 0.5) != labels[i] ) / float(len(preds)) assert err < 0.1 @pytest.mark.skipif(**tm.no_cupy()) @pytest.mark.skipif(**tm.no_cudf()) def test_boost_from_prediction_gpu_hist(): import cudf import cupy as cp from sklearn.datasets import load_breast_cancer, load_digits tree_method = "gpu_hist" X, y = load_breast_cancer(return_X_y=True) X, y = cp.array(X), cp.array(y) twskl.run_boost_from_prediction_binary(tree_method, X, y, None) twskl.run_boost_from_prediction_binary(tree_method, X, y, cudf.DataFrame) X, y = load_digits(return_X_y=True) X, y = cp.array(X), cp.array(y) twskl.run_boost_from_prediction_multi_clasas( xgb.XGBClassifier, tree_method, X, y, None ) twskl.run_boost_from_prediction_multi_clasas( xgb.XGBClassifier, tree_method, X, y, cudf.DataFrame ) def test_num_parallel_tree(): twskl.run_housing_rf_regression("gpu_hist") @pytest.mark.skipif(**tm.no_pandas()) @pytest.mark.skipif(**tm.no_cudf()) @pytest.mark.skipif(**tm.no_sklearn()) def test_categorical(): import cudf import cupy as cp import pandas as pd from sklearn.datasets import load_svmlight_file data_dir = tm.data_dir(__file__) X, y = load_svmlight_file(os.path.join(data_dir, "agaricus.txt.train")) clf = xgb.XGBClassifier( tree_method="gpu_hist", enable_categorical=True, n_estimators=10, ) X = pd.DataFrame(X.todense()).astype("category") clf.fit(X, y) with tempfile.TemporaryDirectory() as tempdir: model = os.path.join(tempdir, "categorial.json") clf.save_model(model) with open(model) as fd: categorical = json.load(fd) categories_sizes = np.array( categorical["learner"]["gradient_booster"]["model"]["trees"][0][ "categories_sizes" ] ) assert categories_sizes.shape[0] != 0 np.testing.assert_allclose(categories_sizes, 1) def check_predt(X, y): reg = xgb.XGBRegressor( tree_method="gpu_hist", enable_categorical=True, n_estimators=64 ) reg.fit(X, y) predts = reg.predict(X) booster = reg.get_booster() assert "c" in booster.feature_types assert len(booster.feature_types) == 1 inp_predts = booster.inplace_predict(X) if isinstance(inp_predts, cp.ndarray): inp_predts = cp.asnumpy(inp_predts) np.testing.assert_allclose(predts, inp_predts) y = [1, 2, 3] X = pd.DataFrame({"f0": ["a", "b", "c"]}) X["f0"] = X["f0"].astype("category") check_predt(X, y) X = cudf.DataFrame(X) check_predt(X, y) @pytest.mark.skipif(**tm.no_cupy()) @pytest.mark.skipif(**tm.no_cudf()) def test_classififer(): import cudf import cupy as cp from sklearn.datasets import load_digits X, y = load_digits(return_X_y=True) y *= 10 clf = xgb.XGBClassifier(tree_method="hist", n_estimators=1, device="cuda") # numpy with pytest.raises(ValueError, match=r"Invalid classes.*"): clf.fit(X, y) # cupy X, y = cp.array(X), cp.array(y) with pytest.raises(ValueError, match=r"Invalid classes.*"): clf.fit(X, y) # cudf X, y = cudf.DataFrame(X), cudf.DataFrame(y) with pytest.raises(ValueError, match=r"Invalid classes.*"): clf.fit(X, y) # pandas X, y = load_digits(return_X_y=True, as_frame=True) y *= 10 with pytest.raises(ValueError, match=r"Invalid classes.*"): clf.fit(X, y) @pytest.mark.skipif(**tm.no_pandas()) def test_ranking_qid_df(): import cudf run_ranking_qid_df(cudf, "gpu_hist") @pytest.mark.skipif(**tm.no_pandas()) def test_ranking_categorical() -> None: run_ranking_categorical(device="cuda") @pytest.mark.skipif(**tm.no_cupy()) @pytest.mark.mgpu def test_device_ordinal() -> None: import cupy as cp n_devices = 2 def worker(ordinal: int, correct_ordinal: bool) -> None: if correct_ordinal: cp.cuda.runtime.setDevice(ordinal) else: cp.cuda.runtime.setDevice((ordinal + 1) % n_devices) X, y, w = tm.make_regression(4096, 12, use_cupy=True) reg = xgb.XGBRegressor(device=f"cuda:{ordinal}", tree_method="hist") if correct_ordinal: reg.fit( X, y, sample_weight=w, eval_set=[(X, y)], sample_weight_eval_set=[w] ) assert tm.non_increasing(reg.evals_result()["validation_0"]["rmse"]) return with pytest.raises(ValueError, match="Invalid device ordinal"): reg.fit( X, y, sample_weight=w, eval_set=[(X, y)], sample_weight_eval_set=[w] ) with ThreadPoolExecutor(max_workers=os.cpu_count()) as executor: futures = [] n_trials = 32 for i in range(n_trials): fut = executor.submit( worker, ordinal=i % n_devices, correct_ordinal=i % 3 != 0 ) futures.append(fut) for fut in futures: fut.result() cp.cuda.runtime.setDevice(0)