/*! * Copyright 2019-2022 XGBoost contributors */ #include #include #include "../common/categorical.h" #include "../common/hist_util.cuh" #include "../common/random.h" #include "../common/transform_iterator.h" // MakeIndexTransformIter #include "./ellpack_page.cuh" #include "device_adapter.cuh" #include "gradient_index.h" #include "xgboost/data.h" namespace xgboost { EllpackPage::EllpackPage() : impl_{new EllpackPageImpl()} {} EllpackPage::EllpackPage(DMatrix* dmat, const BatchParam& param) : impl_{new EllpackPageImpl(dmat, param)} {} EllpackPage::~EllpackPage() = default; EllpackPage::EllpackPage(EllpackPage&& that) { std::swap(impl_, that.impl_); } size_t EllpackPage::Size() const { return impl_->Size(); } void EllpackPage::SetBaseRowId(std::size_t row_id) { impl_->SetBaseRowId(row_id); } // Bin each input data entry, store the bin indices in compressed form. __global__ void CompressBinEllpackKernel( common::CompressedBufferWriter wr, common::CompressedByteT* __restrict__ buffer, // gidx_buffer const size_t* __restrict__ row_ptrs, // row offset of input data const Entry* __restrict__ entries, // One batch of input data const float* __restrict__ cuts, // HistogramCuts::cut_values_ const uint32_t* __restrict__ cut_ptrs, // HistogramCuts::cut_ptrs_ common::Span feature_types, size_t base_row, // batch_row_begin size_t n_rows, size_t row_stride, unsigned int null_gidx_value) { size_t irow = threadIdx.x + blockIdx.x * blockDim.x; int ifeature = threadIdx.y + blockIdx.y * blockDim.y; if (irow >= n_rows || ifeature >= row_stride) { return; } int row_length = static_cast(row_ptrs[irow + 1] - row_ptrs[irow]); unsigned int bin = null_gidx_value; if (ifeature < row_length) { Entry entry = entries[row_ptrs[irow] - row_ptrs[0] + ifeature]; int feature = entry.index; float fvalue = entry.fvalue; // {feature_cuts, ncuts} forms the array of cuts of `feature'. const float* feature_cuts = &cuts[cut_ptrs[feature]]; int ncuts = cut_ptrs[feature + 1] - cut_ptrs[feature]; bool is_cat = common::IsCat(feature_types, ifeature); // Assigning the bin in current entry. // S.t.: fvalue < feature_cuts[bin] if (is_cat) { auto it = dh::MakeTransformIterator( feature_cuts, [](float v) { return common::AsCat(v); }); bin = thrust::lower_bound(thrust::seq, it, it + ncuts, common::AsCat(fvalue)) - it; } else { bin = thrust::upper_bound(thrust::seq, feature_cuts, feature_cuts + ncuts, fvalue) - feature_cuts; } if (bin >= ncuts) { bin = ncuts - 1; } // Add the number of bins in previous features. bin += cut_ptrs[feature]; } // Write to gidx buffer. wr.AtomicWriteSymbol(buffer, bin, (irow + base_row) * row_stride + ifeature); } // Construct an ELLPACK matrix with the given number of empty rows. EllpackPageImpl::EllpackPageImpl(int device, common::HistogramCuts cuts, bool is_dense, size_t row_stride, size_t n_rows) : is_dense(is_dense), cuts_(std::move(cuts)), row_stride(row_stride), n_rows(n_rows) { monitor_.Init("ellpack_page"); dh::safe_cuda(cudaSetDevice(device)); monitor_.Start("InitCompressedData"); InitCompressedData(device); monitor_.Stop("InitCompressedData"); } EllpackPageImpl::EllpackPageImpl(int device, common::HistogramCuts cuts, const SparsePage &page, bool is_dense, size_t row_stride, common::Span feature_types) : cuts_(std::move(cuts)), is_dense(is_dense), n_rows(page.Size()), row_stride(row_stride) { this->InitCompressedData(device); this->CreateHistIndices(device, page, feature_types); } // Construct an ELLPACK matrix in memory. EllpackPageImpl::EllpackPageImpl(DMatrix* dmat, const BatchParam& param) : is_dense(dmat->IsDense()) { monitor_.Init("ellpack_page"); dh::safe_cuda(cudaSetDevice(param.gpu_id)); n_rows = dmat->Info().num_row_; monitor_.Start("Quantiles"); // Create the quantile sketches for the dmatrix and initialize HistogramCuts. row_stride = GetRowStride(dmat); cuts_ = common::DeviceSketch(param.gpu_id, dmat, param.max_bin); monitor_.Stop("Quantiles"); monitor_.Start("InitCompressedData"); this->InitCompressedData(param.gpu_id); monitor_.Stop("InitCompressedData"); dmat->Info().feature_types.SetDevice(param.gpu_id); auto ft = dmat->Info().feature_types.ConstDeviceSpan(); monitor_.Start("BinningCompression"); CHECK(dmat->SingleColBlock()); for (const auto& batch : dmat->GetBatches()) { CreateHistIndices(param.gpu_id, batch, ft); } monitor_.Stop("BinningCompression"); } template struct WriteCompressedEllpackFunctor { WriteCompressedEllpackFunctor(common::CompressedByteT* buffer, const common::CompressedBufferWriter& writer, AdapterBatchT batch, EllpackDeviceAccessor accessor, common::Span feature_types, const data::IsValidFunctor& is_valid) : d_buffer(buffer), writer(writer), batch(std::move(batch)), accessor(std::move(accessor)), feature_types(std::move(feature_types)), is_valid(is_valid) {} common::CompressedByteT* d_buffer; common::CompressedBufferWriter writer; AdapterBatchT batch; EllpackDeviceAccessor accessor; common::Span feature_types; data::IsValidFunctor is_valid; using Tuple = thrust::tuple; __device__ size_t operator()(Tuple out) { auto e = batch.GetElement(out.get<2>()); if (is_valid(e)) { // -1 because the scan is inclusive size_t output_position = accessor.row_stride * e.row_idx + out.get<1>() - 1; uint32_t bin_idx = 0; if (common::IsCat(feature_types, e.column_idx)) { bin_idx = accessor.SearchBin(e.value, e.column_idx); } else { bin_idx = accessor.SearchBin(e.value, e.column_idx); } writer.AtomicWriteSymbol(d_buffer, bin_idx, output_position); } return 0; } }; template struct TupleScanOp { __device__ Tuple operator()(Tuple a, Tuple b) { // Key equal if (a.template get<0>() == b.template get<0>()) { b.template get<1>() += a.template get<1>(); return b; } // Not equal return b; } }; // Here the data is already correctly ordered and simply needs to be compacted // to remove missing data template void CopyDataToEllpack(const AdapterBatchT &batch, common::Span feature_types, EllpackPageImpl *dst, int device_idx, float missing) { // Some witchcraft happens here // The goal is to copy valid elements out of the input to an ELLPACK matrix // with a given row stride, using no extra working memory Standard stream // compaction needs to be modified to do this, so we manually define a // segmented stream compaction via operators on an inclusive scan. The output // of this inclusive scan is fed to a custom function which works out the // correct output position auto counting = thrust::make_counting_iterator(0llu); data::IsValidFunctor is_valid(missing); auto key_iter = dh::MakeTransformIterator( counting, [=] __device__(size_t idx) { return batch.GetElement(idx).row_idx; }); auto value_iter = dh::MakeTransformIterator( counting, [=] __device__(size_t idx) -> size_t { return is_valid(batch.GetElement(idx)); }); auto key_value_index_iter = thrust::make_zip_iterator( thrust::make_tuple(key_iter, value_iter, counting)); // Tuple[0] = The row index of the input, used as a key to define segments // Tuple[1] = Scanned flags of valid elements for each row // Tuple[2] = The index in the input data using Tuple = thrust::tuple; auto device_accessor = dst->GetDeviceAccessor(device_idx); common::CompressedBufferWriter writer(device_accessor.NumSymbols()); auto d_compressed_buffer = dst->gidx_buffer.DevicePointer(); // We redirect the scan output into this functor to do the actual writing WriteCompressedEllpackFunctor functor( d_compressed_buffer, writer, batch, device_accessor, feature_types, is_valid); dh::TypedDiscard discard; thrust::transform_output_iterator< WriteCompressedEllpackFunctor, decltype(discard)> out(discard, functor); // Go one level down into cub::DeviceScan API to set OffsetT as 64 bit // So we don't crash on n > 2^31 size_t temp_storage_bytes = 0; using DispatchScan = cub::DispatchScan, cub::NullType, int64_t>; #if THRUST_MAJOR_VERSION >= 2 DispatchScan::Dispatch(nullptr, temp_storage_bytes, key_value_index_iter, out, TupleScanOp(), cub::NullType(), batch.Size(), nullptr); #else DispatchScan::Dispatch(nullptr, temp_storage_bytes, key_value_index_iter, out, TupleScanOp(), cub::NullType(), batch.Size(), nullptr, false); #endif dh::TemporaryArray temp_storage(temp_storage_bytes); #if THRUST_MAJOR_VERSION >= 2 DispatchScan::Dispatch(temp_storage.data().get(), temp_storage_bytes, key_value_index_iter, out, TupleScanOp(), cub::NullType(), batch.Size(), nullptr); #else DispatchScan::Dispatch(temp_storage.data().get(), temp_storage_bytes, key_value_index_iter, out, TupleScanOp(), cub::NullType(), batch.Size(), nullptr, false); #endif } void WriteNullValues(EllpackPageImpl* dst, int device_idx, common::Span row_counts) { // Write the null values auto device_accessor = dst->GetDeviceAccessor(device_idx); common::CompressedBufferWriter writer(device_accessor.NumSymbols()); auto d_compressed_buffer = dst->gidx_buffer.DevicePointer(); auto row_stride = dst->row_stride; dh::LaunchN(row_stride * dst->n_rows, [=] __device__(size_t idx) { // For some reason this variable got captured as const auto writer_non_const = writer; size_t row_idx = idx / row_stride; size_t row_offset = idx % row_stride; if (row_offset >= row_counts[row_idx]) { writer_non_const.AtomicWriteSymbol(d_compressed_buffer, device_accessor.NullValue(), idx); } }); } template EllpackPageImpl::EllpackPageImpl(AdapterBatch batch, float missing, int device, bool is_dense, common::Span row_counts_span, common::Span feature_types, size_t row_stride, size_t n_rows, common::HistogramCuts const& cuts) { dh::safe_cuda(cudaSetDevice(device)); *this = EllpackPageImpl(device, cuts, is_dense, row_stride, n_rows); CopyDataToEllpack(batch, feature_types, this, device, missing); WriteNullValues(this, device, row_counts_span); } #define ELLPACK_BATCH_SPECIALIZE(__BATCH_T) \ template EllpackPageImpl::EllpackPageImpl( \ __BATCH_T batch, float missing, int device, bool is_dense, \ common::Span row_counts_span, common::Span feature_types, \ size_t row_stride, size_t n_rows, common::HistogramCuts const& cuts); ELLPACK_BATCH_SPECIALIZE(data::CudfAdapterBatch) ELLPACK_BATCH_SPECIALIZE(data::CupyAdapterBatch) namespace { void CopyGHistToEllpack(GHistIndexMatrix const& page, common::Span d_row_ptr, size_t row_stride, common::CompressedByteT* d_compressed_buffer, size_t null) { dh::device_vector data(page.index.begin(), page.index.end()); auto d_data = dh::ToSpan(data); dh::device_vector csc_indptr(page.index.Offset(), page.index.Offset() + page.index.OffsetSize()); auto d_csc_indptr = dh::ToSpan(csc_indptr); auto bin_type = page.index.GetBinTypeSize(); common::CompressedBufferWriter writer{page.cut.TotalBins() + 1}; // +1 for null value dh::LaunchN(row_stride * page.Size(), [=] __device__(size_t idx) mutable { auto ridx = idx / row_stride; auto ifeature = idx % row_stride; auto r_begin = d_row_ptr[ridx]; auto r_end = d_row_ptr[ridx + 1]; size_t r_size = r_end - r_begin; if (ifeature >= r_size) { writer.AtomicWriteSymbol(d_compressed_buffer, null, idx); return; } size_t offset = 0; if (!d_csc_indptr.empty()) { // is dense, ifeature is the actual feature index. offset = d_csc_indptr[ifeature]; } common::cuda::DispatchBinType(bin_type, [&](auto t) { using T = decltype(t); auto ptr = reinterpret_cast(d_data.data()); auto bin_idx = ptr[r_begin + ifeature] + offset; writer.AtomicWriteSymbol(d_compressed_buffer, bin_idx, idx); }); }); } } // anonymous namespace EllpackPageImpl::EllpackPageImpl(Context const* ctx, GHistIndexMatrix const& page, common::Span ft) : is_dense{page.IsDense()}, base_rowid{page.base_rowid}, n_rows{page.Size()}, cuts_{page.cut} { auto it = common::MakeIndexTransformIter( [&](size_t i) { return page.row_ptr[i + 1] - page.row_ptr[i]; }); row_stride = *std::max_element(it, it + page.Size()); CHECK_GE(ctx->gpu_id, 0); monitor_.Start("InitCompressedData"); InitCompressedData(ctx->gpu_id); monitor_.Stop("InitCompressedData"); // copy gidx common::CompressedByteT* d_compressed_buffer = gidx_buffer.DevicePointer(); dh::device_vector row_ptr(page.row_ptr); auto d_row_ptr = dh::ToSpan(row_ptr); auto accessor = this->GetDeviceAccessor(ctx->gpu_id, ft); auto null = accessor.NullValue(); CopyGHistToEllpack(page, d_row_ptr, row_stride, d_compressed_buffer, null); } // A functor that copies the data from one EllpackPage to another. struct CopyPage { common::CompressedBufferWriter cbw; common::CompressedByteT* dst_data_d; common::CompressedIterator src_iterator_d; // The number of elements to skip. size_t offset; CopyPage(EllpackPageImpl *dst, EllpackPageImpl const *src, size_t offset) : cbw{dst->NumSymbols()}, dst_data_d{dst->gidx_buffer.DevicePointer()}, src_iterator_d{src->gidx_buffer.DevicePointer(), src->NumSymbols()}, offset(offset) {} __device__ void operator()(size_t element_id) { cbw.AtomicWriteSymbol(dst_data_d, src_iterator_d[element_id], element_id + offset); } }; // Copy the data from the given EllpackPage to the current page. size_t EllpackPageImpl::Copy(int device, EllpackPageImpl const *page, size_t offset) { monitor_.Start("Copy"); size_t num_elements = page->n_rows * page->row_stride; CHECK_EQ(row_stride, page->row_stride); CHECK_EQ(NumSymbols(), page->NumSymbols()); CHECK_GE(n_rows * row_stride, offset + num_elements); if (page == this) { LOG(FATAL) << "Concatenating the same Ellpack."; return this->n_rows * this->row_stride; } gidx_buffer.SetDevice(device); page->gidx_buffer.SetDevice(device); dh::LaunchN(num_elements, CopyPage(this, page, offset)); monitor_.Stop("Copy"); return num_elements; } // A functor that compacts the rows from one EllpackPage into another. struct CompactPage { common::CompressedBufferWriter cbw; common::CompressedByteT* dst_data_d; common::CompressedIterator src_iterator_d; /*! \brief An array that maps the rows from the full DMatrix to the compacted * page. * * The total size is the number of rows in the original, uncompacted DMatrix. * Elements are the row ids in the compacted page. Rows not needed are set to * SIZE_MAX. * * An example compacting 16 rows to 8 rows: * [SIZE_MAX, 0, 1, SIZE_MAX, SIZE_MAX, 2, SIZE_MAX, 3, 4, 5, SIZE_MAX, 6, * SIZE_MAX, 7, SIZE_MAX, SIZE_MAX] */ common::Span row_indexes; size_t base_rowid; size_t row_stride; CompactPage(EllpackPageImpl* dst, EllpackPageImpl const* src, common::Span row_indexes) : cbw{dst->NumSymbols()}, dst_data_d{dst->gidx_buffer.DevicePointer()}, src_iterator_d{src->gidx_buffer.DevicePointer(), src->NumSymbols()}, row_indexes(row_indexes), base_rowid{src->base_rowid}, row_stride{src->row_stride} {} __device__ void operator()(size_t row_id) { size_t src_row = base_rowid + row_id; size_t dst_row = row_indexes[src_row]; if (dst_row == SIZE_MAX) return; size_t dst_offset = dst_row * row_stride; size_t src_offset = row_id * row_stride; for (size_t j = 0; j < row_stride; j++) { cbw.AtomicWriteSymbol(dst_data_d, src_iterator_d[src_offset + j], dst_offset + j); } } }; // Compacts the data from the given EllpackPage into the current page. void EllpackPageImpl::Compact(int device, EllpackPageImpl const* page, common::Span row_indexes) { monitor_.Start("Compact"); CHECK_EQ(row_stride, page->row_stride); CHECK_EQ(NumSymbols(), page->NumSymbols()); CHECK_LE(page->base_rowid + page->n_rows, row_indexes.size()); gidx_buffer.SetDevice(device); page->gidx_buffer.SetDevice(device); dh::LaunchN(page->n_rows, CompactPage(this, page, row_indexes)); monitor_.Stop("Compact"); } // Initialize the buffer to stored compressed features. void EllpackPageImpl::InitCompressedData(int device) { size_t num_symbols = NumSymbols(); // Required buffer size for storing data matrix in ELLPack format. size_t compressed_size_bytes = common::CompressedBufferWriter::CalculateBufferSize(row_stride * n_rows, num_symbols); gidx_buffer.SetDevice(device); // Don't call fill unnecessarily if (gidx_buffer.Size() == 0) { gidx_buffer.Resize(compressed_size_bytes, 0); } else { gidx_buffer.Resize(compressed_size_bytes, 0); thrust::fill(dh::tbegin(gidx_buffer), dh::tend(gidx_buffer), 0); } } // Compress a CSR page into ELLPACK. void EllpackPageImpl::CreateHistIndices(int device, const SparsePage& row_batch, common::Span feature_types) { if (row_batch.Size() == 0) return; unsigned int null_gidx_value = NumSymbols() - 1; const auto& offset_vec = row_batch.offset.ConstHostVector(); // bin and compress entries in batches of rows size_t gpu_batch_nrows = std::min(dh::TotalMemory(device) / (16 * row_stride * sizeof(Entry)), static_cast(row_batch.Size())); size_t gpu_nbatches = common::DivRoundUp(row_batch.Size(), gpu_batch_nrows); for (size_t gpu_batch = 0; gpu_batch < gpu_nbatches; ++gpu_batch) { size_t batch_row_begin = gpu_batch * gpu_batch_nrows; size_t batch_row_end = std::min((gpu_batch + 1) * gpu_batch_nrows, row_batch.Size()); size_t batch_nrows = batch_row_end - batch_row_begin; const auto ent_cnt_begin = offset_vec[batch_row_begin]; const auto ent_cnt_end = offset_vec[batch_row_end]; /*! \brief row offset in SparsePage (the input data). */ dh::device_vector row_ptrs(batch_nrows + 1); thrust::copy(offset_vec.data() + batch_row_begin, offset_vec.data() + batch_row_end + 1, row_ptrs.begin()); // number of entries in this batch. size_t n_entries = ent_cnt_end - ent_cnt_begin; dh::device_vector entries_d(n_entries); // copy data entries to device. if (row_batch.data.DeviceCanRead()) { auto const& d_data = row_batch.data.ConstDeviceSpan(); dh::safe_cuda(cudaMemcpyAsync( entries_d.data().get(), d_data.data() + ent_cnt_begin, n_entries * sizeof(Entry), cudaMemcpyDefault)); } else { const std::vector& data_vec = row_batch.data.ConstHostVector(); dh::safe_cuda(cudaMemcpyAsync( entries_d.data().get(), data_vec.data() + ent_cnt_begin, n_entries * sizeof(Entry), cudaMemcpyDefault)); } const dim3 block3(32, 8, 1); // 256 threads const dim3 grid3(common::DivRoundUp(batch_nrows, block3.x), common::DivRoundUp(row_stride, block3.y), 1); auto device_accessor = GetDeviceAccessor(device); dh::LaunchKernel {grid3, block3}( CompressBinEllpackKernel, common::CompressedBufferWriter(NumSymbols()), gidx_buffer.DevicePointer(), row_ptrs.data().get(), entries_d.data().get(), device_accessor.gidx_fvalue_map.data(), device_accessor.feature_segments.data(), feature_types, batch_row_begin, batch_nrows, row_stride, null_gidx_value); } } // Return the number of rows contained in this page. size_t EllpackPageImpl::Size() const { return n_rows; } // Return the memory cost for storing the compressed features. size_t EllpackPageImpl::MemCostBytes(size_t num_rows, size_t row_stride, const common::HistogramCuts& cuts) { // Required buffer size for storing data matrix in EtoLLPack format. size_t compressed_size_bytes = common::CompressedBufferWriter::CalculateBufferSize(row_stride * num_rows, cuts.TotalBins() + 1); return compressed_size_bytes; } EllpackDeviceAccessor EllpackPageImpl::GetDeviceAccessor( int device, common::Span feature_types) const { gidx_buffer.SetDevice(device); return {device, cuts_, is_dense, row_stride, base_rowid, n_rows, common::CompressedIterator(gidx_buffer.ConstDevicePointer(), NumSymbols()), feature_types}; } EllpackDeviceAccessor EllpackPageImpl::GetHostAccessor( common::Span feature_types) const { return {Context::kCpuId, cuts_, is_dense, row_stride, base_rowid, n_rows, common::CompressedIterator(gidx_buffer.ConstHostPointer(), NumSymbols()), feature_types}; } } // namespace xgboost