import sys from typing import List import numpy as np import pandas as pd import pytest import testing as tm if tm.no_spark()["condition"]: pytest.skip(msg=tm.no_spark()["reason"], allow_module_level=True) if sys.platform.startswith("win") or sys.platform.startswith("darwin"): pytest.skip("Skipping PySpark tests on Windows", allow_module_level=True) from xgboost.spark.data import alias, create_dmatrix_from_partitions, stack_series def test_stack() -> None: a = pd.DataFrame({"a": [[1, 2], [3, 4]]}) b = stack_series(a["a"]) assert b.shape == (2, 2) a = pd.DataFrame({"a": [[1], [3]]}) b = stack_series(a["a"]) assert b.shape == (2, 1) a = pd.DataFrame({"a": [np.array([1, 2]), np.array([3, 4])]}) b = stack_series(a["a"]) assert b.shape == (2, 2) a = pd.DataFrame({"a": [np.array([1]), np.array([3])]}) b = stack_series(a["a"]) assert b.shape == (2, 1) def run_dmatrix_ctor(is_dqm: bool) -> None: rng = np.random.default_rng(0) dfs: List[pd.DataFrame] = [] n_features = 16 n_samples_per_batch = 16 n_batches = 10 feature_types = ["float"] * n_features for i in range(n_batches): X = rng.normal(loc=0, size=256).reshape(n_samples_per_batch, n_features) y = rng.normal(loc=0, size=n_samples_per_batch) m = rng.normal(loc=0, size=n_samples_per_batch) w = rng.normal(loc=0.5, scale=0.5, size=n_samples_per_batch) w -= w.min() valid = rng.binomial(n=1, p=0.5, size=16).astype(np.bool_) df = pd.DataFrame( {alias.label: y, alias.margin: m, alias.weight: w, alias.valid: valid} ) if is_dqm: for j in range(X.shape[1]): df[f"feat-{j}"] = pd.Series(X[:, j]) else: df[alias.data] = pd.Series(list(X)) dfs.append(df) kwargs = {"feature_types": feature_types} if is_dqm: cols = [f"feat-{i}" for i in range(n_features)] train_Xy, valid_Xy = create_dmatrix_from_partitions(iter(dfs), cols, 0, kwargs) else: train_Xy, valid_Xy = create_dmatrix_from_partitions( iter(dfs), None, None, kwargs ) assert valid_Xy is not None assert valid_Xy.num_row() + train_Xy.num_row() == n_samples_per_batch * n_batches assert train_Xy.num_col() == n_features assert valid_Xy.num_col() == n_features df = pd.concat(dfs, axis=0) df_train = df.loc[~df[alias.valid], :] df_valid = df.loc[df[alias.valid], :] assert df_train.shape[0] == train_Xy.num_row() assert df_valid.shape[0] == valid_Xy.num_row() # margin np.testing.assert_allclose( df_train[alias.margin].to_numpy(), train_Xy.get_base_margin() ) np.testing.assert_allclose( df_valid[alias.margin].to_numpy(), valid_Xy.get_base_margin() ) # weight np.testing.assert_allclose(df_train[alias.weight].to_numpy(), train_Xy.get_weight()) np.testing.assert_allclose(df_valid[alias.weight].to_numpy(), valid_Xy.get_weight()) # label np.testing.assert_allclose(df_train[alias.label].to_numpy(), train_Xy.get_label()) np.testing.assert_allclose(df_valid[alias.label].to_numpy(), valid_Xy.get_label()) np.testing.assert_equal(train_Xy.feature_types, feature_types) np.testing.assert_equal(valid_Xy.feature_types, feature_types) def test_dmatrix_ctor() -> None: run_dmatrix_ctor(False)