Compare commits
28 Commits
master-roc
...
v2.0.2
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
41ce8f28b2 | ||
|
|
0ffc52e05c | ||
|
|
a408254c2f | ||
|
|
22e891dafa | ||
|
|
89530c80a7 | ||
|
|
946ab53b57 | ||
|
|
afd03a6934 | ||
|
|
f7da938458 | ||
|
|
6ab6577511 | ||
|
|
8c57558d74 | ||
|
|
58aa98a796 | ||
|
|
92273b39d8 | ||
|
|
e824b18bf6 | ||
|
|
66ee89d8b4 | ||
|
|
54d1d72d01 | ||
|
|
032bcc57f9 | ||
|
|
ace7713201 | ||
|
|
096047c547 | ||
|
|
e75dd75bb2 | ||
|
|
4d387cbfbf | ||
|
|
3fde9361d7 | ||
|
|
b67c2ed96d | ||
|
|
177fd79864 | ||
|
|
06487d3896 | ||
|
|
e50ccc4d3c | ||
|
|
add57f8880 | ||
|
|
a0d3573c74 | ||
|
|
4301558a57 |
17
.github/workflows/jvm_tests.yml
vendored
17
.github/workflows/jvm_tests.yml
vendored
@ -51,14 +51,14 @@ jobs:
|
||||
id: extract_branch
|
||||
if: |
|
||||
(github.ref == 'refs/heads/master' || contains(github.ref, 'refs/heads/release_')) &&
|
||||
matrix.os == 'windows-latest'
|
||||
(matrix.os == 'windows-latest' || matrix.os == 'macos-11')
|
||||
|
||||
- name: Publish artifact xgboost4j.dll to S3
|
||||
run: |
|
||||
cd lib/
|
||||
Rename-Item -Path xgboost4j.dll -NewName xgboost4j_${{ github.sha }}.dll
|
||||
dir
|
||||
python -m awscli s3 cp xgboost4j_${{ github.sha }}.dll s3://xgboost-nightly-builds/${{ steps.extract_branch.outputs.branch }}/ --acl public-read
|
||||
python -m awscli s3 cp xgboost4j_${{ github.sha }}.dll s3://xgboost-nightly-builds/${{ steps.extract_branch.outputs.branch }}/libxgboost4j/ --acl public-read
|
||||
if: |
|
||||
(github.ref == 'refs/heads/master' || contains(github.ref, 'refs/heads/release_')) &&
|
||||
matrix.os == 'windows-latest'
|
||||
@ -66,6 +66,19 @@ jobs:
|
||||
AWS_ACCESS_KEY_ID: ${{ secrets.AWS_ACCESS_KEY_ID_IAM_S3_UPLOADER }}
|
||||
AWS_SECRET_ACCESS_KEY: ${{ secrets.AWS_SECRET_ACCESS_KEY_IAM_S3_UPLOADER }}
|
||||
|
||||
- name: Publish artifact libxgboost4j.dylib to S3
|
||||
run: |
|
||||
cd lib/
|
||||
mv -v libxgboost4j.dylib libxgboost4j_${{ github.sha }}.dylib
|
||||
ls
|
||||
python -m awscli s3 cp libxgboost4j_${{ github.sha }}.dylib s3://xgboost-nightly-builds/${{ steps.extract_branch.outputs.branch }}/libxgboost4j/ --acl public-read
|
||||
if: |
|
||||
(github.ref == 'refs/heads/master' || contains(github.ref, 'refs/heads/release_')) &&
|
||||
matrix.os == 'macos-11'
|
||||
env:
|
||||
AWS_ACCESS_KEY_ID: ${{ secrets.AWS_ACCESS_KEY_ID_IAM_S3_UPLOADER }}
|
||||
AWS_SECRET_ACCESS_KEY: ${{ secrets.AWS_SECRET_ACCESS_KEY_IAM_S3_UPLOADER }}
|
||||
|
||||
|
||||
- name: Test XGBoost4J (Core, Spark, Examples)
|
||||
run: |
|
||||
|
||||
4
.github/workflows/r_tests.yml
vendored
4
.github/workflows/r_tests.yml
vendored
@ -25,7 +25,7 @@ jobs:
|
||||
with:
|
||||
submodules: 'true'
|
||||
|
||||
- uses: r-lib/actions/setup-r@50d1eae9b8da0bb3f8582c59a5b82225fa2fe7f2 # v2.3.1
|
||||
- uses: r-lib/actions/setup-r@11a22a908006c25fe054c4ef0ac0436b1de3edbe # v2.6.4
|
||||
with:
|
||||
r-version: ${{ matrix.config.r }}
|
||||
|
||||
@ -64,7 +64,7 @@ jobs:
|
||||
with:
|
||||
submodules: 'true'
|
||||
|
||||
- uses: r-lib/actions/setup-r@50d1eae9b8da0bb3f8582c59a5b82225fa2fe7f2 # v2.3.1
|
||||
- uses: r-lib/actions/setup-r@11a22a908006c25fe054c4ef0ac0436b1de3edbe # v2.6.4
|
||||
with:
|
||||
r-version: ${{ matrix.config.r }}
|
||||
|
||||
|
||||
@ -32,4 +32,3 @@ formats:
|
||||
python:
|
||||
install:
|
||||
- requirements: doc/requirements.txt
|
||||
system_packages: true
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
cmake_minimum_required(VERSION 3.18 FATAL_ERROR)
|
||||
project(xgboost LANGUAGES CXX C VERSION 2.0.0)
|
||||
project(xgboost LANGUAGES CXX C VERSION 2.0.2)
|
||||
include(cmake/Utils.cmake)
|
||||
list(APPEND CMAKE_MODULE_PATH "${xgboost_SOURCE_DIR}/cmake/modules")
|
||||
cmake_policy(SET CMP0022 NEW)
|
||||
@ -233,6 +233,11 @@ endif (RABIT_BUILD_MPI)
|
||||
add_subdirectory(${xgboost_SOURCE_DIR}/src)
|
||||
target_link_libraries(objxgboost PUBLIC dmlc)
|
||||
|
||||
# Link -lstdc++fs for GCC 8.x
|
||||
if(CMAKE_CXX_COMPILER_ID STREQUAL "GNU" AND CMAKE_CXX_COMPILER_VERSION VERSION_LESS "9.0")
|
||||
target_link_libraries(objxgboost PUBLIC stdc++fs)
|
||||
endif()
|
||||
|
||||
# Exports some R specific definitions and objects
|
||||
if (R_LIB)
|
||||
add_subdirectory(${xgboost_SOURCE_DIR}/R-package)
|
||||
|
||||
@ -1,8 +1,8 @@
|
||||
Package: xgboost
|
||||
Type: Package
|
||||
Title: Extreme Gradient Boosting
|
||||
Version: 2.0.0.1
|
||||
Date: 2022-10-18
|
||||
Version: 2.0.2.1
|
||||
Date: 2023-10-12
|
||||
Authors@R: c(
|
||||
person("Tianqi", "Chen", role = c("aut"),
|
||||
email = "tianqi.tchen@gmail.com"),
|
||||
|
||||
@ -70,7 +70,7 @@ cb.print.evaluation <- function(period = 1, showsd = TRUE) {
|
||||
i == env$begin_iteration ||
|
||||
i == env$end_iteration) {
|
||||
stdev <- if (showsd) env$bst_evaluation_err else NULL
|
||||
msg <- format.eval.string(i, env$bst_evaluation, stdev)
|
||||
msg <- .format_eval_string(i, env$bst_evaluation, stdev)
|
||||
cat(msg, '\n')
|
||||
}
|
||||
}
|
||||
@ -380,7 +380,9 @@ cb.early.stop <- function(stopping_rounds, maximize = FALSE,
|
||||
if ((maximize && score > best_score) ||
|
||||
(!maximize && score < best_score)) {
|
||||
|
||||
best_msg <<- format.eval.string(i, env$bst_evaluation, env$bst_evaluation_err)
|
||||
best_msg <<- .format_eval_string(
|
||||
i, env$bst_evaluation, env$bst_evaluation_err
|
||||
)
|
||||
best_score <<- score
|
||||
best_iteration <<- i
|
||||
best_ntreelimit <<- best_iteration * env$num_parallel_tree
|
||||
@ -754,7 +756,7 @@ xgb.gblinear.history <- function(model, class_index = NULL) {
|
||||
#
|
||||
|
||||
# Format the evaluation metric string
|
||||
format.eval.string <- function(iter, eval_res, eval_err = NULL) {
|
||||
.format_eval_string <- function(iter, eval_res, eval_err = NULL) {
|
||||
if (length(eval_res) == 0)
|
||||
stop('no evaluation results')
|
||||
enames <- names(eval_res)
|
||||
|
||||
18
R-package/configure
vendored
18
R-package/configure
vendored
@ -1,6 +1,6 @@
|
||||
#! /bin/sh
|
||||
# Guess values for system-dependent variables and create Makefiles.
|
||||
# Generated by GNU Autoconf 2.71 for xgboost 2.0.0.
|
||||
# Generated by GNU Autoconf 2.71 for xgboost 2.0.2.
|
||||
#
|
||||
#
|
||||
# Copyright (C) 1992-1996, 1998-2017, 2020-2021 Free Software Foundation,
|
||||
@ -607,8 +607,8 @@ MAKEFLAGS=
|
||||
# Identity of this package.
|
||||
PACKAGE_NAME='xgboost'
|
||||
PACKAGE_TARNAME='xgboost'
|
||||
PACKAGE_VERSION='2.0.0'
|
||||
PACKAGE_STRING='xgboost 2.0.0'
|
||||
PACKAGE_VERSION='2.0.2'
|
||||
PACKAGE_STRING='xgboost 2.0.2'
|
||||
PACKAGE_BUGREPORT=''
|
||||
PACKAGE_URL=''
|
||||
|
||||
@ -1225,7 +1225,7 @@ if test "$ac_init_help" = "long"; then
|
||||
# Omit some internal or obsolete options to make the list less imposing.
|
||||
# This message is too long to be a string in the A/UX 3.1 sh.
|
||||
cat <<_ACEOF
|
||||
\`configure' configures xgboost 2.0.0 to adapt to many kinds of systems.
|
||||
\`configure' configures xgboost 2.0.2 to adapt to many kinds of systems.
|
||||
|
||||
Usage: $0 [OPTION]... [VAR=VALUE]...
|
||||
|
||||
@ -1287,7 +1287,7 @@ fi
|
||||
|
||||
if test -n "$ac_init_help"; then
|
||||
case $ac_init_help in
|
||||
short | recursive ) echo "Configuration of xgboost 2.0.0:";;
|
||||
short | recursive ) echo "Configuration of xgboost 2.0.2:";;
|
||||
esac
|
||||
cat <<\_ACEOF
|
||||
|
||||
@ -1367,7 +1367,7 @@ fi
|
||||
test -n "$ac_init_help" && exit $ac_status
|
||||
if $ac_init_version; then
|
||||
cat <<\_ACEOF
|
||||
xgboost configure 2.0.0
|
||||
xgboost configure 2.0.2
|
||||
generated by GNU Autoconf 2.71
|
||||
|
||||
Copyright (C) 2021 Free Software Foundation, Inc.
|
||||
@ -1533,7 +1533,7 @@ cat >config.log <<_ACEOF
|
||||
This file contains any messages produced by compilers while
|
||||
running configure, to aid debugging if configure makes a mistake.
|
||||
|
||||
It was created by xgboost $as_me 2.0.0, which was
|
||||
It was created by xgboost $as_me 2.0.2, which was
|
||||
generated by GNU Autoconf 2.71. Invocation command line was
|
||||
|
||||
$ $0$ac_configure_args_raw
|
||||
@ -3412,7 +3412,7 @@ cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1
|
||||
# report actual input values of CONFIG_FILES etc. instead of their
|
||||
# values after options handling.
|
||||
ac_log="
|
||||
This file was extended by xgboost $as_me 2.0.0, which was
|
||||
This file was extended by xgboost $as_me 2.0.2, which was
|
||||
generated by GNU Autoconf 2.71. Invocation command line was
|
||||
|
||||
CONFIG_FILES = $CONFIG_FILES
|
||||
@ -3467,7 +3467,7 @@ ac_cs_config_escaped=`printf "%s\n" "$ac_cs_config" | sed "s/^ //; s/'/'\\\\\\\\
|
||||
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
|
||||
ac_cs_config='$ac_cs_config_escaped'
|
||||
ac_cs_version="\\
|
||||
xgboost config.status 2.0.0
|
||||
xgboost config.status 2.0.2
|
||||
configured by $0, generated by GNU Autoconf 2.71,
|
||||
with options \\"\$ac_cs_config\\"
|
||||
|
||||
|
||||
@ -2,7 +2,7 @@
|
||||
|
||||
AC_PREREQ(2.69)
|
||||
|
||||
AC_INIT([xgboost],[2.0.0],[],[xgboost],[])
|
||||
AC_INIT([xgboost],[2.0.2],[],[xgboost],[])
|
||||
|
||||
: ${R_HOME=`R RHOME`}
|
||||
if test -z "${R_HOME}"; then
|
||||
|
||||
@ -120,11 +120,25 @@ XGB_DLL SEXP XGDMatrixCreateFromMat_R(SEXP mat, SEXP missing, SEXP n_threads) {
|
||||
ctx.nthread = asInteger(n_threads);
|
||||
std::int32_t threads = ctx.Threads();
|
||||
|
||||
xgboost::common::ParallelFor(nrow, threads, [&](xgboost::omp_ulong i) {
|
||||
for (size_t j = 0; j < ncol; ++j) {
|
||||
data[i * ncol + j] = is_int ? static_cast<float>(iin[i + nrow * j]) : din[i + nrow * j];
|
||||
}
|
||||
});
|
||||
if (is_int) {
|
||||
xgboost::common::ParallelFor(nrow, threads, [&](xgboost::omp_ulong i) {
|
||||
for (size_t j = 0; j < ncol; ++j) {
|
||||
auto v = iin[i + nrow * j];
|
||||
if (v == NA_INTEGER) {
|
||||
data[i * ncol + j] = std::numeric_limits<float>::quiet_NaN();
|
||||
} else {
|
||||
data[i * ncol + j] = static_cast<float>(v);
|
||||
}
|
||||
}
|
||||
});
|
||||
} else {
|
||||
xgboost::common::ParallelFor(nrow, threads, [&](xgboost::omp_ulong i) {
|
||||
for (size_t j = 0; j < ncol; ++j) {
|
||||
data[i * ncol + j] = din[i + nrow * j];
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
DMatrixHandle handle;
|
||||
CHECK_CALL(XGDMatrixCreateFromMat_omp(BeginPtr(data), nrow, ncol,
|
||||
asReal(missing), &handle, threads));
|
||||
|
||||
@ -56,6 +56,42 @@ test_that("xgb.DMatrix: basic construction", {
|
||||
expect_equal(raw_fd, raw_dgc)
|
||||
})
|
||||
|
||||
test_that("xgb.DMatrix: NA", {
|
||||
n_samples <- 3
|
||||
x <- cbind(
|
||||
x1 = sample(x = 4, size = n_samples, replace = TRUE),
|
||||
x2 = sample(x = 4, size = n_samples, replace = TRUE)
|
||||
)
|
||||
x[1, "x1"] <- NA
|
||||
|
||||
m <- xgb.DMatrix(x)
|
||||
xgb.DMatrix.save(m, "int.dmatrix")
|
||||
|
||||
x <- matrix(as.numeric(x), nrow = n_samples, ncol = 2)
|
||||
colnames(x) <- c("x1", "x2")
|
||||
m <- xgb.DMatrix(x)
|
||||
|
||||
xgb.DMatrix.save(m, "float.dmatrix")
|
||||
|
||||
iconn <- file("int.dmatrix", "rb")
|
||||
fconn <- file("float.dmatrix", "rb")
|
||||
|
||||
expect_equal(file.size("int.dmatrix"), file.size("float.dmatrix"))
|
||||
|
||||
bytes <- file.size("int.dmatrix")
|
||||
idmatrix <- readBin(iconn, "raw", n = bytes)
|
||||
fdmatrix <- readBin(fconn, "raw", n = bytes)
|
||||
|
||||
expect_equal(length(idmatrix), length(fdmatrix))
|
||||
expect_equal(idmatrix, fdmatrix)
|
||||
|
||||
close(iconn)
|
||||
close(fconn)
|
||||
|
||||
file.remove("int.dmatrix")
|
||||
file.remove("float.dmatrix")
|
||||
})
|
||||
|
||||
test_that("xgb.DMatrix: saving, loading", {
|
||||
# save to a local file
|
||||
dtest1 <- xgb.DMatrix(test_data, label = test_label)
|
||||
|
||||
@ -21,12 +21,14 @@ def normpath(path):
|
||||
else:
|
||||
return normalized
|
||||
|
||||
|
||||
def cp(source, target):
|
||||
source = normpath(source)
|
||||
target = normpath(target)
|
||||
print("cp {0} {1}".format(source, target))
|
||||
shutil.copy(source, target)
|
||||
|
||||
|
||||
def maybe_makedirs(path):
|
||||
path = normpath(path)
|
||||
print("mkdir -p " + path)
|
||||
@ -36,6 +38,7 @@ def maybe_makedirs(path):
|
||||
if e.errno != errno.EEXIST:
|
||||
raise
|
||||
|
||||
|
||||
@contextmanager
|
||||
def cd(path):
|
||||
path = normpath(path)
|
||||
@ -47,18 +50,22 @@ def cd(path):
|
||||
finally:
|
||||
os.chdir(cwd)
|
||||
|
||||
|
||||
def run(command, **kwargs):
|
||||
print(command)
|
||||
subprocess.check_call(command, shell=True, **kwargs)
|
||||
|
||||
|
||||
def get_current_git_tag():
|
||||
out = subprocess.check_output(["git", "tag", "--points-at", "HEAD"])
|
||||
return out.decode().split("\n")[0]
|
||||
|
||||
|
||||
def get_current_commit_hash():
|
||||
out = subprocess.check_output(["git", "rev-parse", "HEAD"])
|
||||
return out.decode().split("\n")[0]
|
||||
|
||||
|
||||
def get_current_git_branch():
|
||||
out = subprocess.check_output(["git", "log", "-n", "1", "--pretty=%d", "HEAD"])
|
||||
m = re.search(r"release_[0-9\.]+", out.decode())
|
||||
@ -66,38 +73,53 @@ def get_current_git_branch():
|
||||
raise ValueError("Expected branch name of form release_xxx")
|
||||
return m.group(0)
|
||||
|
||||
|
||||
def retrieve(url, filename=None):
|
||||
print(f"{url} -> {filename}")
|
||||
return urlretrieve(url, filename)
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--release-version", type=str, required=True,
|
||||
help="Version of the release being prepared")
|
||||
parser.add_argument(
|
||||
"--release-version",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Version of the release being prepared",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
if sys.platform != "darwin" or platform.machine() != "x86_64":
|
||||
raise NotImplementedError("Please run this script using an Intel Mac")
|
||||
if sys.platform != "darwin" or platform.machine() != "arm64":
|
||||
raise NotImplementedError("Please run this script using an M1 Mac")
|
||||
|
||||
version = args.release_version
|
||||
expected_git_tag = "v" + version
|
||||
current_git_tag = get_current_git_tag()
|
||||
if current_git_tag != expected_git_tag:
|
||||
if not current_git_tag:
|
||||
raise ValueError(f"Expected git tag {expected_git_tag} but current HEAD has no tag. "
|
||||
f"Run: git checkout {expected_git_tag}")
|
||||
raise ValueError(f"Expected git tag {expected_git_tag} but current HEAD is at tag "
|
||||
f"{current_git_tag}. Run: git checkout {expected_git_tag}")
|
||||
raise ValueError(
|
||||
f"Expected git tag {expected_git_tag} but current HEAD has no tag. "
|
||||
f"Run: git checkout {expected_git_tag}"
|
||||
)
|
||||
raise ValueError(
|
||||
f"Expected git tag {expected_git_tag} but current HEAD is at tag "
|
||||
f"{current_git_tag}. Run: git checkout {expected_git_tag}"
|
||||
)
|
||||
|
||||
commit_hash = get_current_commit_hash()
|
||||
git_branch = get_current_git_branch()
|
||||
print(f"Using commit {commit_hash} of branch {git_branch}, git tag {current_git_tag}")
|
||||
print(
|
||||
f"Using commit {commit_hash} of branch {git_branch}, git tag {current_git_tag}"
|
||||
)
|
||||
|
||||
with cd("jvm-packages/"):
|
||||
print("====copying pure-Python tracker====")
|
||||
for use_cuda in [True, False]:
|
||||
xgboost4j = "xgboost4j-gpu" if use_cuda else "xgboost4j"
|
||||
cp("../python-package/xgboost/tracker.py", f"{xgboost4j}/src/main/resources")
|
||||
cp(
|
||||
"../python-package/xgboost/tracker.py",
|
||||
f"{xgboost4j}/src/main/resources",
|
||||
)
|
||||
|
||||
print("====copying resources for testing====")
|
||||
with cd("../demo/CLI/regression"):
|
||||
@ -115,7 +137,11 @@ def main():
|
||||
cp(file, f"{xgboost4j_spark}/src/test/resources")
|
||||
|
||||
print("====Creating directories to hold native binaries====")
|
||||
for os_ident, arch in [("linux", "x86_64"), ("windows", "x86_64"), ("macos", "x86_64")]:
|
||||
for os_ident, arch in [
|
||||
("linux", "x86_64"),
|
||||
("windows", "x86_64"),
|
||||
("macos", "x86_64"),
|
||||
]:
|
||||
output_dir = f"xgboost4j/src/main/resources/lib/{os_ident}/{arch}"
|
||||
maybe_makedirs(output_dir)
|
||||
for os_ident, arch in [("linux", "x86_64")]:
|
||||
@ -123,52 +149,86 @@ def main():
|
||||
maybe_makedirs(output_dir)
|
||||
|
||||
print("====Downloading native binaries from CI====")
|
||||
nightly_bucket_prefix = "https://s3-us-west-2.amazonaws.com/xgboost-nightly-builds"
|
||||
maven_repo_prefix = "https://s3-us-west-2.amazonaws.com/xgboost-maven-repo/release/ml/dmlc"
|
||||
nightly_bucket_prefix = (
|
||||
"https://s3-us-west-2.amazonaws.com/xgboost-nightly-builds"
|
||||
)
|
||||
maven_repo_prefix = (
|
||||
"https://s3-us-west-2.amazonaws.com/xgboost-maven-repo/release/ml/dmlc"
|
||||
)
|
||||
|
||||
retrieve(url=f"{nightly_bucket_prefix}/{git_branch}/xgboost4j_{commit_hash}.dll",
|
||||
filename="xgboost4j/src/main/resources/lib/windows/x86_64/xgboost4j.dll")
|
||||
retrieve(
|
||||
url=f"{nightly_bucket_prefix}/{git_branch}/libxgboost4j/xgboost4j_{commit_hash}.dll",
|
||||
filename="xgboost4j/src/main/resources/lib/windows/x86_64/xgboost4j.dll",
|
||||
)
|
||||
retrieve(
|
||||
url=f"{nightly_bucket_prefix}/{git_branch}/libxgboost4j/libxgboost4j_{commit_hash}.dylib",
|
||||
filename="xgboost4j/src/main/resources/lib/macos/x86_64/libxgboost4j.dylib",
|
||||
)
|
||||
|
||||
with tempfile.TemporaryDirectory() as tempdir:
|
||||
# libxgboost4j.so for Linux x86_64, CPU only
|
||||
zip_path = os.path.join(tempdir, "xgboost4j_2.12.jar")
|
||||
extract_dir = os.path.join(tempdir, "xgboost4j")
|
||||
retrieve(url=f"{maven_repo_prefix}/xgboost4j_2.12/{version}/"
|
||||
f"xgboost4j_2.12-{version}.jar",
|
||||
filename=zip_path)
|
||||
retrieve(
|
||||
url=f"{maven_repo_prefix}/xgboost4j_2.12/{version}/"
|
||||
f"xgboost4j_2.12-{version}.jar",
|
||||
filename=zip_path,
|
||||
)
|
||||
os.mkdir(extract_dir)
|
||||
with zipfile.ZipFile(zip_path, "r") as t:
|
||||
t.extractall(extract_dir)
|
||||
cp(os.path.join(extract_dir, "lib", "linux", "x86_64", "libxgboost4j.so"),
|
||||
"xgboost4j/src/main/resources/lib/linux/x86_64/libxgboost4j.so")
|
||||
cp(
|
||||
os.path.join(extract_dir, "lib", "linux", "x86_64", "libxgboost4j.so"),
|
||||
"xgboost4j/src/main/resources/lib/linux/x86_64/libxgboost4j.so",
|
||||
)
|
||||
|
||||
# libxgboost4j.so for Linux x86_64, GPU support
|
||||
zip_path = os.path.join(tempdir, "xgboost4j-gpu_2.12.jar")
|
||||
extract_dir = os.path.join(tempdir, "xgboost4j-gpu")
|
||||
retrieve(url=f"{maven_repo_prefix}/xgboost4j-gpu_2.12/{version}/"
|
||||
f"xgboost4j-gpu_2.12-{version}.jar",
|
||||
filename=zip_path)
|
||||
retrieve(
|
||||
url=f"{maven_repo_prefix}/xgboost4j-gpu_2.12/{version}/"
|
||||
f"xgboost4j-gpu_2.12-{version}.jar",
|
||||
filename=zip_path,
|
||||
)
|
||||
os.mkdir(extract_dir)
|
||||
with zipfile.ZipFile(zip_path, "r") as t:
|
||||
t.extractall(extract_dir)
|
||||
cp(os.path.join(extract_dir, "lib", "linux", "x86_64", "libxgboost4j.so"),
|
||||
"xgboost4j-gpu/src/main/resources/lib/linux/x86_64/libxgboost4j.so")
|
||||
|
||||
cp(
|
||||
os.path.join(extract_dir, "lib", "linux", "x86_64", "libxgboost4j.so"),
|
||||
"xgboost4j-gpu/src/main/resources/lib/linux/x86_64/libxgboost4j.so",
|
||||
)
|
||||
|
||||
print("====Next Steps====")
|
||||
print("1. Gain upload right to Maven Central repo.")
|
||||
print("1-1. Sign up for a JIRA account at Sonatype: ")
|
||||
print("1-2. File a JIRA ticket: "
|
||||
"https://issues.sonatype.org/secure/CreateIssue.jspa?issuetype=21&pid=10134. Example: "
|
||||
"https://issues.sonatype.org/browse/OSSRH-67724")
|
||||
print("2. Store the Sonatype credentials in .m2/settings.xml. See insturctions in "
|
||||
"https://central.sonatype.org/publish/publish-maven/")
|
||||
print("3. Now on a Mac machine, run:")
|
||||
print(
|
||||
"1-2. File a JIRA ticket: "
|
||||
"https://issues.sonatype.org/secure/CreateIssue.jspa?issuetype=21&pid=10134. Example: "
|
||||
"https://issues.sonatype.org/browse/OSSRH-67724"
|
||||
)
|
||||
print(
|
||||
"2. Store the Sonatype credentials in .m2/settings.xml. See insturctions in "
|
||||
"https://central.sonatype.org/publish/publish-maven/"
|
||||
)
|
||||
print(
|
||||
"3. Now on a M1 Mac machine, run the following to build Scala 2.12 artifacts:"
|
||||
)
|
||||
print(" GPG_TTY=$(tty) mvn deploy -Prelease -DskipTests")
|
||||
print("4. Log into https://oss.sonatype.org/. On the left menu panel, click Staging "
|
||||
"Repositories. Visit the URL https://oss.sonatype.org/content/repositories/mldmlc-1085 "
|
||||
"to inspect the staged JAR files. Finally, press Release button to publish the "
|
||||
"artifacts to the Maven Central repository.")
|
||||
print(
|
||||
"4. Log into https://oss.sonatype.org/. On the left menu panel, click Staging "
|
||||
"Repositories. Visit the URL https://oss.sonatype.org/content/repositories/mldmlc-xxxx "
|
||||
"to inspect the staged JAR files. Finally, press Release button to publish the "
|
||||
"artifacts to the Maven Central repository. The top-level metapackage should be "
|
||||
"named xgboost-jvm_2.12."
|
||||
)
|
||||
print("5. Remove the Scala 2.12 artifacts and build Scala 2.13 artifacts:")
|
||||
print(" rm -rf targets/")
|
||||
print(" GPG_TTY=$(tty) mvn deploy -Prelease-cpu-only,scala-2.13 -DskipTests")
|
||||
print(
|
||||
"6. Go to https://oss.sonatype.org/ to release the Scala 2.13 artifacts."
|
||||
"The top-level metapackage should be named xgboost-jvm_2.13."
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
@ -329,7 +329,7 @@ Parameters for Linear Booster (``booster=gblinear``)
|
||||
- Choice of algorithm to fit linear model
|
||||
|
||||
- ``shotgun``: Parallel coordinate descent algorithm based on shotgun algorithm. Uses 'hogwild' parallelism and therefore produces a nondeterministic solution on each run.
|
||||
- ``coord_descent``: Ordinary coordinate descent algorithm. Also multithreaded but still produces a deterministic solution.
|
||||
- ``coord_descent``: Ordinary coordinate descent algorithm. Also multithreaded but still produces a deterministic solution. When the ``device`` parameter is set to ``cuda`` or ``gpu``, a GPU variant would be used.
|
||||
|
||||
* ``feature_selector`` [default= ``cyclic``]
|
||||
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
/*!
|
||||
* Copyright 2020 by Contributors
|
||||
/**
|
||||
* Copyright 2020-2023, XGBoost Contributors
|
||||
* \file global_config.h
|
||||
* \brief Global configuration for XGBoost
|
||||
* \author Hyunsu Cho
|
||||
@ -7,24 +7,22 @@
|
||||
#ifndef XGBOOST_GLOBAL_CONFIG_H_
|
||||
#define XGBOOST_GLOBAL_CONFIG_H_
|
||||
|
||||
#include <xgboost/parameter.h>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <dmlc/thread_local.h> // for ThreadLocalStore
|
||||
#include <xgboost/parameter.h> // for XGBoostParameter
|
||||
|
||||
#include <cstdint> // for int32_t
|
||||
|
||||
namespace xgboost {
|
||||
class Json;
|
||||
|
||||
struct GlobalConfiguration : public XGBoostParameter<GlobalConfiguration> {
|
||||
int verbosity { 1 };
|
||||
bool use_rmm { false };
|
||||
std::int32_t verbosity{1};
|
||||
bool use_rmm{false};
|
||||
DMLC_DECLARE_PARAMETER(GlobalConfiguration) {
|
||||
DMLC_DECLARE_FIELD(verbosity)
|
||||
.set_range(0, 3)
|
||||
.set_default(1) // shows only warning
|
||||
.describe("Flag to print out detailed breakdown of runtime.");
|
||||
DMLC_DECLARE_FIELD(use_rmm)
|
||||
.set_default(false)
|
||||
.describe("Whether to use RAPIDS Memory Manager to allocate GPU memory in XGBoost");
|
||||
DMLC_DECLARE_FIELD(use_rmm).set_default(false).describe(
|
||||
"Whether to use RAPIDS Memory Manager to allocate GPU memory in XGBoost");
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
@ -6,6 +6,6 @@
|
||||
|
||||
#define XGBOOST_VER_MAJOR 2 /* NOLINT */
|
||||
#define XGBOOST_VER_MINOR 0 /* NOLINT */
|
||||
#define XGBOOST_VER_PATCH 0 /* NOLINT */
|
||||
#define XGBOOST_VER_PATCH 2 /* NOLINT */
|
||||
|
||||
#endif // XGBOOST_VERSION_CONFIG_H_
|
||||
|
||||
@ -25,4 +25,3 @@ target_include_directories(xgboost4j
|
||||
${PROJECT_SOURCE_DIR}/rabit/include)
|
||||
|
||||
set_output_directory(xgboost4j ${PROJECT_SOURCE_DIR}/lib)
|
||||
target_link_libraries(xgboost4j PRIVATE ${JAVA_JVM_LIBRARY})
|
||||
|
||||
@ -5,8 +5,8 @@
|
||||
<modelVersion>4.0.0</modelVersion>
|
||||
|
||||
<groupId>ml.dmlc</groupId>
|
||||
<artifactId>xgboost-jvm</artifactId>
|
||||
<version>2.0.0-SNAPSHOT</version>
|
||||
<artifactId>xgboost-jvm_${scala.binary.version}</artifactId>
|
||||
<version>2.0.2</version>
|
||||
<packaging>pom</packaging>
|
||||
<name>XGBoost JVM Package</name>
|
||||
<description>JVM Package for XGBoost</description>
|
||||
@ -189,6 +189,93 @@
|
||||
</plugins>
|
||||
</build>
|
||||
</profile>
|
||||
<profile>
|
||||
<id>release-cpu-only</id>
|
||||
<modules>
|
||||
<module>xgboost4j</module>
|
||||
<module>xgboost4j-example</module>
|
||||
<module>xgboost4j-spark</module>
|
||||
<module>xgboost4j-flink</module>
|
||||
</modules>
|
||||
<build>
|
||||
<plugins>
|
||||
<plugin>
|
||||
<groupId>org.apache.maven.plugins</groupId>
|
||||
<artifactId>maven-jar-plugin</artifactId>
|
||||
<version>3.3.0</version>
|
||||
<executions>
|
||||
<execution>
|
||||
<id>empty-javadoc-jar</id>
|
||||
<phase>package</phase>
|
||||
<goals>
|
||||
<goal>jar</goal>
|
||||
</goals>
|
||||
<configuration>
|
||||
<classifier>javadoc</classifier>
|
||||
<classesDirectory>${basedir}/javadoc</classesDirectory>
|
||||
</configuration>
|
||||
</execution>
|
||||
</executions>
|
||||
</plugin>
|
||||
<plugin>
|
||||
<groupId>org.apache.maven.plugins</groupId>
|
||||
<artifactId>maven-release-plugin</artifactId>
|
||||
<version>3.0.1</version>
|
||||
<configuration>
|
||||
<autoVersionSubmodules>true</autoVersionSubmodules>
|
||||
<useReleaseProfile>false</useReleaseProfile>
|
||||
<releaseProfiles>release</releaseProfiles>
|
||||
<goals>deploy</goals>
|
||||
</configuration>
|
||||
</plugin>
|
||||
<plugin>
|
||||
<groupId>org.apache.maven.plugins</groupId>
|
||||
<artifactId>maven-gpg-plugin</artifactId>
|
||||
<version>3.1.0</version>
|
||||
<executions>
|
||||
<execution>
|
||||
<id>sign-artifacts</id>
|
||||
<phase>verify</phase>
|
||||
<goals>
|
||||
<goal>sign</goal>
|
||||
</goals>
|
||||
</execution>
|
||||
</executions>
|
||||
</plugin>
|
||||
<plugin>
|
||||
<groupId>org.apache.maven.plugins</groupId>
|
||||
<artifactId>maven-source-plugin</artifactId>
|
||||
<version>3.3.0</version>
|
||||
<executions>
|
||||
<execution>
|
||||
<id>attach-sources</id>
|
||||
<goals>
|
||||
<goal>jar-no-fork</goal>
|
||||
</goals>
|
||||
</execution>
|
||||
</executions>
|
||||
</plugin>
|
||||
<plugin>
|
||||
<groupId>org.sonatype.plugins</groupId>
|
||||
<artifactId>nexus-staging-maven-plugin</artifactId>
|
||||
<version>1.6.13</version>
|
||||
<extensions>true</extensions>
|
||||
<configuration>
|
||||
<serverId>ossrh</serverId>
|
||||
<nexusUrl>https://oss.sonatype.org/</nexusUrl>
|
||||
<autoReleaseAfterClose>false</autoReleaseAfterClose>
|
||||
</configuration>
|
||||
</plugin>
|
||||
<plugin>
|
||||
<groupId>org.apache.maven.plugins</groupId>
|
||||
<artifactId>maven-surefire-plugin</artifactId>
|
||||
<configuration>
|
||||
<skipTests>true</skipTests>
|
||||
</configuration>
|
||||
</plugin>
|
||||
</plugins>
|
||||
</build>
|
||||
</profile>
|
||||
<profile>
|
||||
<id>assembly</id>
|
||||
<build>
|
||||
|
||||
@ -5,12 +5,12 @@
|
||||
<modelVersion>4.0.0</modelVersion>
|
||||
<parent>
|
||||
<groupId>ml.dmlc</groupId>
|
||||
<artifactId>xgboost-jvm</artifactId>
|
||||
<version>2.0.0-SNAPSHOT</version>
|
||||
<artifactId>xgboost-jvm_${scala.binary.version}</artifactId>
|
||||
<version>2.0.2</version>
|
||||
</parent>
|
||||
<name>xgboost4j-example</name>
|
||||
<artifactId>xgboost4j-example_${scala.binary.version}</artifactId>
|
||||
<version>2.0.0-SNAPSHOT</version>
|
||||
<version>2.0.2</version>
|
||||
<packaging>jar</packaging>
|
||||
<build>
|
||||
<plugins>
|
||||
|
||||
@ -5,13 +5,13 @@
|
||||
<modelVersion>4.0.0</modelVersion>
|
||||
<parent>
|
||||
<groupId>ml.dmlc</groupId>
|
||||
<artifactId>xgboost-jvm</artifactId>
|
||||
<version>2.0.0-SNAPSHOT</version>
|
||||
<artifactId>xgboost-jvm_${scala.binary.version}</artifactId>
|
||||
<version>2.0.2</version>
|
||||
</parent>
|
||||
|
||||
<name>xgboost4j-flink</name>
|
||||
<artifactId>xgboost4j-flink_${scala.binary.version}</artifactId>
|
||||
<version>2.0.0-SNAPSHOT</version>
|
||||
<version>2.0.2</version>
|
||||
<properties>
|
||||
<flink-ml.version>2.2.0</flink-ml.version>
|
||||
</properties>
|
||||
|
||||
@ -5,12 +5,12 @@
|
||||
<modelVersion>4.0.0</modelVersion>
|
||||
<parent>
|
||||
<groupId>ml.dmlc</groupId>
|
||||
<artifactId>xgboost-jvm</artifactId>
|
||||
<version>2.0.0-SNAPSHOT</version>
|
||||
<artifactId>xgboost-jvm_${scala.binary.version}</artifactId>
|
||||
<version>2.0.2</version>
|
||||
</parent>
|
||||
<artifactId>xgboost4j-gpu_${scala.binary.version}</artifactId>
|
||||
<name>xgboost4j-gpu</name>
|
||||
<version>2.0.0-SNAPSHOT</version>
|
||||
<version>2.0.2</version>
|
||||
<packaging>jar</packaging>
|
||||
|
||||
<dependencies>
|
||||
|
||||
@ -5,8 +5,8 @@
|
||||
<modelVersion>4.0.0</modelVersion>
|
||||
<parent>
|
||||
<groupId>ml.dmlc</groupId>
|
||||
<artifactId>xgboost-jvm</artifactId>
|
||||
<version>2.0.0-SNAPSHOT</version>
|
||||
<artifactId>xgboost-jvm_${scala.binary.version}</artifactId>
|
||||
<version>2.0.2</version>
|
||||
</parent>
|
||||
<name>xgboost4j-spark-gpu</name>
|
||||
<artifactId>xgboost4j-spark-gpu_${scala.binary.version}</artifactId>
|
||||
|
||||
@ -5,8 +5,8 @@
|
||||
<modelVersion>4.0.0</modelVersion>
|
||||
<parent>
|
||||
<groupId>ml.dmlc</groupId>
|
||||
<artifactId>xgboost-jvm</artifactId>
|
||||
<version>2.0.0-SNAPSHOT</version>
|
||||
<artifactId>xgboost-jvm_${scala.binary.version}</artifactId>
|
||||
<version>2.0.2</version>
|
||||
</parent>
|
||||
<name>xgboost4j-spark</name>
|
||||
<artifactId>xgboost4j-spark_${scala.binary.version}</artifactId>
|
||||
|
||||
@ -5,12 +5,12 @@
|
||||
<modelVersion>4.0.0</modelVersion>
|
||||
<parent>
|
||||
<groupId>ml.dmlc</groupId>
|
||||
<artifactId>xgboost-jvm</artifactId>
|
||||
<version>2.0.0-SNAPSHOT</version>
|
||||
<artifactId>xgboost-jvm_${scala.binary.version}</artifactId>
|
||||
<version>2.0.2</version>
|
||||
</parent>
|
||||
<name>xgboost4j</name>
|
||||
<artifactId>xgboost4j_${scala.binary.version}</artifactId>
|
||||
<version>2.0.0-SNAPSHOT</version>
|
||||
<version>2.0.2</version>
|
||||
<packaging>jar</packaging>
|
||||
|
||||
<dependencies>
|
||||
|
||||
@ -132,16 +132,28 @@ def locate_or_build_libxgboost(
|
||||
|
||||
if build_config.use_system_libxgboost:
|
||||
# Find libxgboost from system prefix
|
||||
sys_base_prefix = pathlib.Path(sys.base_prefix).absolute().resolve()
|
||||
libxgboost_sys = sys_base_prefix / "lib" / _lib_name()
|
||||
if not libxgboost_sys.exists():
|
||||
raise RuntimeError(
|
||||
f"use_system_libxgboost was specified but {_lib_name()} is "
|
||||
f"not found in {libxgboost_sys.parent}"
|
||||
)
|
||||
|
||||
logger.info("Using system XGBoost: %s", str(libxgboost_sys))
|
||||
return libxgboost_sys
|
||||
sys_prefix = pathlib.Path(sys.base_prefix)
|
||||
sys_prefix_candidates = [
|
||||
sys_prefix / "lib",
|
||||
# Paths possibly used on Windows
|
||||
sys_prefix / "bin",
|
||||
sys_prefix / "Library",
|
||||
sys_prefix / "Library" / "bin",
|
||||
sys_prefix / "Library" / "lib",
|
||||
]
|
||||
sys_prefix_candidates = [
|
||||
p.expanduser().resolve() for p in sys_prefix_candidates
|
||||
]
|
||||
for candidate_dir in sys_prefix_candidates:
|
||||
libtreelite_sys = candidate_dir / _lib_name()
|
||||
if libtreelite_sys.exists():
|
||||
logger.info("Using system XGBoost: %s", str(libtreelite_sys))
|
||||
return libtreelite_sys
|
||||
raise RuntimeError(
|
||||
f"use_system_libxgboost was specified but {_lib_name()} is "
|
||||
f"not found. Paths searched (in order): \n"
|
||||
+ "\n".join([f"* {str(p)}" for p in sys_prefix_candidates])
|
||||
)
|
||||
|
||||
libxgboost = locate_local_libxgboost(toplevel_dir, logger=logger)
|
||||
if libxgboost is not None:
|
||||
|
||||
@ -7,7 +7,7 @@ build-backend = "packager.pep517"
|
||||
|
||||
[project]
|
||||
name = "xgboost"
|
||||
version = "2.0.0-dev"
|
||||
version = "2.0.2"
|
||||
authors = [
|
||||
{ name = "Hyunsu Cho", email = "chohyu01@cs.washington.edu" },
|
||||
{ name = "Jiaming Yuan", email = "jm.yuan@outlook.com" }
|
||||
|
||||
@ -1 +1 @@
|
||||
2.0.0-dev
|
||||
2.0.2
|
||||
|
||||
@ -88,6 +88,18 @@ def is_cudf_available() -> bool:
|
||||
return False
|
||||
|
||||
|
||||
def is_cupy_available() -> bool:
|
||||
"""Check cupy package available or not"""
|
||||
if importlib.util.find_spec("cupy") is None:
|
||||
return False
|
||||
try:
|
||||
import cupy
|
||||
|
||||
return True
|
||||
except ImportError:
|
||||
return False
|
||||
|
||||
|
||||
try:
|
||||
import scipy.sparse as scipy_sparse
|
||||
from scipy.sparse import csr_matrix as scipy_csr
|
||||
|
||||
@ -2399,6 +2399,7 @@ class Booster:
|
||||
_is_cudf_df,
|
||||
_is_cupy_array,
|
||||
_is_list,
|
||||
_is_np_array_like,
|
||||
_is_pandas_df,
|
||||
_is_pandas_series,
|
||||
_is_tuple,
|
||||
@ -2428,7 +2429,7 @@ class Booster:
|
||||
f"got {data.shape[1]}"
|
||||
)
|
||||
|
||||
if isinstance(data, np.ndarray):
|
||||
if _is_np_array_like(data):
|
||||
from .data import _ensure_np_dtype
|
||||
|
||||
data, _ = _ensure_np_dtype(data, data.dtype)
|
||||
|
||||
@ -164,8 +164,8 @@ def _is_scipy_coo(data: DataType) -> bool:
|
||||
return isinstance(data, scipy.sparse.coo_matrix)
|
||||
|
||||
|
||||
def _is_numpy_array(data: DataType) -> bool:
|
||||
return isinstance(data, (np.ndarray, np.matrix))
|
||||
def _is_np_array_like(data: DataType) -> bool:
|
||||
return hasattr(data, "__array_interface__")
|
||||
|
||||
|
||||
def _ensure_np_dtype(
|
||||
@ -317,7 +317,6 @@ def pandas_feature_info(
|
||||
) -> Tuple[Optional[FeatureNames], Optional[FeatureTypes]]:
|
||||
"""Handle feature info for pandas dataframe."""
|
||||
import pandas as pd
|
||||
from pandas.api.types import is_categorical_dtype, is_sparse
|
||||
|
||||
# handle feature names
|
||||
if feature_names is None and meta is None:
|
||||
@ -332,10 +331,10 @@ def pandas_feature_info(
|
||||
if feature_types is None and meta is None:
|
||||
feature_types = []
|
||||
for dtype in data.dtypes:
|
||||
if is_sparse(dtype):
|
||||
if is_pd_sparse_dtype(dtype):
|
||||
feature_types.append(_pandas_dtype_mapper[dtype.subtype.name])
|
||||
elif (
|
||||
is_categorical_dtype(dtype) or is_pa_ext_categorical_dtype(dtype)
|
||||
is_pd_cat_dtype(dtype) or is_pa_ext_categorical_dtype(dtype)
|
||||
) and enable_categorical:
|
||||
feature_types.append(CAT_T)
|
||||
else:
|
||||
@ -345,18 +344,13 @@ def pandas_feature_info(
|
||||
|
||||
def is_nullable_dtype(dtype: PandasDType) -> bool:
|
||||
"""Whether dtype is a pandas nullable type."""
|
||||
from pandas.api.types import (
|
||||
is_bool_dtype,
|
||||
is_categorical_dtype,
|
||||
is_float_dtype,
|
||||
is_integer_dtype,
|
||||
)
|
||||
from pandas.api.types import is_bool_dtype, is_float_dtype, is_integer_dtype
|
||||
|
||||
is_int = is_integer_dtype(dtype) and dtype.name in pandas_nullable_mapper
|
||||
# np.bool has alias `bool`, while pd.BooleanDtype has `boolean`.
|
||||
is_bool = is_bool_dtype(dtype) and dtype.name == "boolean"
|
||||
is_float = is_float_dtype(dtype) and dtype.name in pandas_nullable_mapper
|
||||
return is_int or is_bool or is_float or is_categorical_dtype(dtype)
|
||||
return is_int or is_bool or is_float or is_pd_cat_dtype(dtype)
|
||||
|
||||
|
||||
def is_pa_ext_dtype(dtype: Any) -> bool:
|
||||
@ -371,17 +365,48 @@ def is_pa_ext_categorical_dtype(dtype: Any) -> bool:
|
||||
)
|
||||
|
||||
|
||||
def is_pd_cat_dtype(dtype: PandasDType) -> bool:
|
||||
"""Wrapper for testing pandas category type."""
|
||||
import pandas as pd
|
||||
|
||||
if hasattr(pd.util, "version") and hasattr(pd.util.version, "Version"):
|
||||
Version = pd.util.version.Version
|
||||
if Version(pd.__version__) >= Version("2.1.0"):
|
||||
from pandas import CategoricalDtype
|
||||
|
||||
return isinstance(dtype, CategoricalDtype)
|
||||
|
||||
from pandas.api.types import is_categorical_dtype
|
||||
|
||||
return is_categorical_dtype(dtype)
|
||||
|
||||
|
||||
def is_pd_sparse_dtype(dtype: PandasDType) -> bool:
|
||||
"""Wrapper for testing pandas sparse type."""
|
||||
import pandas as pd
|
||||
|
||||
if hasattr(pd.util, "version") and hasattr(pd.util.version, "Version"):
|
||||
Version = pd.util.version.Version
|
||||
if Version(pd.__version__) >= Version("2.1.0"):
|
||||
from pandas import SparseDtype
|
||||
|
||||
return isinstance(dtype, SparseDtype)
|
||||
|
||||
from pandas.api.types import is_sparse
|
||||
|
||||
return is_sparse(dtype)
|
||||
|
||||
|
||||
def pandas_cat_null(data: DataFrame) -> DataFrame:
|
||||
"""Handle categorical dtype and nullable extension types from pandas."""
|
||||
import pandas as pd
|
||||
from pandas.api.types import is_categorical_dtype
|
||||
|
||||
# handle category codes and nullable.
|
||||
cat_columns = []
|
||||
nul_columns = []
|
||||
# avoid an unnecessary conversion if possible
|
||||
for col, dtype in zip(data.columns, data.dtypes):
|
||||
if is_categorical_dtype(dtype):
|
||||
if is_pd_cat_dtype(dtype):
|
||||
cat_columns.append(col)
|
||||
elif is_pa_ext_categorical_dtype(dtype):
|
||||
raise ValueError(
|
||||
@ -398,7 +423,7 @@ def pandas_cat_null(data: DataFrame) -> DataFrame:
|
||||
transformed = data
|
||||
|
||||
def cat_codes(ser: pd.Series) -> pd.Series:
|
||||
if is_categorical_dtype(ser.dtype):
|
||||
if is_pd_cat_dtype(ser.dtype):
|
||||
return ser.cat.codes
|
||||
assert is_pa_ext_categorical_dtype(ser.dtype)
|
||||
# Not yet supported, the index is not ordered for some reason. Alternately:
|
||||
@ -454,14 +479,12 @@ def _transform_pandas_df(
|
||||
meta: Optional[str] = None,
|
||||
meta_type: Optional[NumpyDType] = None,
|
||||
) -> Tuple[np.ndarray, Optional[FeatureNames], Optional[FeatureTypes]]:
|
||||
from pandas.api.types import is_categorical_dtype, is_sparse
|
||||
|
||||
pyarrow_extension = False
|
||||
for dtype in data.dtypes:
|
||||
if not (
|
||||
(dtype.name in _pandas_dtype_mapper)
|
||||
or is_sparse(dtype)
|
||||
or (is_categorical_dtype(dtype) and enable_categorical)
|
||||
or is_pd_sparse_dtype(dtype)
|
||||
or (is_pd_cat_dtype(dtype) and enable_categorical)
|
||||
or is_pa_ext_dtype(dtype)
|
||||
):
|
||||
_invalid_dataframe_dtype(data)
|
||||
@ -515,9 +538,8 @@ def _meta_from_pandas_series(
|
||||
) -> None:
|
||||
"""Help transform pandas series for meta data like labels"""
|
||||
data = data.values.astype("float")
|
||||
from pandas.api.types import is_sparse
|
||||
|
||||
if is_sparse(data):
|
||||
if is_pd_sparse_dtype(getattr(data, "dtype", data)):
|
||||
data = data.to_dense() # type: ignore
|
||||
assert len(data.shape) == 1 or data.shape[1] == 0 or data.shape[1] == 1
|
||||
_meta_from_numpy(data, name, dtype, handle)
|
||||
@ -539,13 +561,11 @@ def _from_pandas_series(
|
||||
feature_names: Optional[FeatureNames],
|
||||
feature_types: Optional[FeatureTypes],
|
||||
) -> DispatchedDataBackendReturnType:
|
||||
from pandas.api.types import is_categorical_dtype
|
||||
|
||||
if (data.dtype.name not in _pandas_dtype_mapper) and not (
|
||||
is_categorical_dtype(data.dtype) and enable_categorical
|
||||
is_pd_cat_dtype(data.dtype) and enable_categorical
|
||||
):
|
||||
_invalid_dataframe_dtype(data)
|
||||
if enable_categorical and is_categorical_dtype(data.dtype):
|
||||
if enable_categorical and is_pd_cat_dtype(data.dtype):
|
||||
data = data.cat.codes
|
||||
return _from_numpy_array(
|
||||
data.values.reshape(data.shape[0], 1).astype("float"),
|
||||
@ -1051,7 +1071,7 @@ def dispatch_data_backend(
|
||||
return _from_scipy_csr(
|
||||
data.tocsr(), missing, threads, feature_names, feature_types
|
||||
)
|
||||
if _is_numpy_array(data):
|
||||
if _is_np_array_like(data):
|
||||
return _from_numpy_array(
|
||||
data, missing, threads, feature_names, feature_types, data_split_mode
|
||||
)
|
||||
@ -1194,7 +1214,7 @@ def dispatch_meta_backend(
|
||||
if _is_tuple(data):
|
||||
_meta_from_tuple(data, name, dtype, handle)
|
||||
return
|
||||
if _is_numpy_array(data):
|
||||
if _is_np_array_like(data):
|
||||
_meta_from_numpy(data, name, dtype, handle)
|
||||
return
|
||||
if _is_pandas_df(data):
|
||||
@ -1281,7 +1301,7 @@ def _proxy_transform(
|
||||
return _transform_dlpack(data), None, feature_names, feature_types
|
||||
if _is_list(data) or _is_tuple(data):
|
||||
data = np.array(data)
|
||||
if _is_numpy_array(data):
|
||||
if _is_np_array_like(data):
|
||||
data, _ = _ensure_np_dtype(data, data.dtype)
|
||||
return data, None, feature_names, feature_types
|
||||
if _is_scipy_csr(data):
|
||||
@ -1331,7 +1351,7 @@ def dispatch_proxy_set_data(
|
||||
if not allow_host:
|
||||
raise err
|
||||
|
||||
if _is_numpy_array(data):
|
||||
if _is_np_array_like(data):
|
||||
_check_data_shape(data)
|
||||
proxy._set_data_from_array(data) # pylint: disable=W0212
|
||||
return
|
||||
|
||||
@ -31,16 +31,15 @@ def find_lib_path() -> List[str]:
|
||||
]
|
||||
|
||||
if sys.platform == "win32":
|
||||
if platform.architecture()[0] == "64bit":
|
||||
dll_path.append(os.path.join(curr_path, "../../windows/x64/Release/"))
|
||||
# hack for pip installation when copy all parent source
|
||||
# directory here
|
||||
dll_path.append(os.path.join(curr_path, "./windows/x64/Release/"))
|
||||
else:
|
||||
dll_path.append(os.path.join(curr_path, "../../windows/Release/"))
|
||||
# hack for pip installation when copy all parent source
|
||||
# directory here
|
||||
dll_path.append(os.path.join(curr_path, "./windows/Release/"))
|
||||
# On Windows, Conda may install libs in different paths
|
||||
dll_path.extend(
|
||||
[
|
||||
os.path.join(sys.base_prefix, "bin"),
|
||||
os.path.join(sys.base_prefix, "Library"),
|
||||
os.path.join(sys.base_prefix, "Library", "bin"),
|
||||
os.path.join(sys.base_prefix, "Library", "lib"),
|
||||
]
|
||||
)
|
||||
dll_path = [os.path.join(p, "xgboost.dll") for p in dll_path]
|
||||
elif sys.platform.startswith(("linux", "freebsd", "emscripten")):
|
||||
dll_path = [os.path.join(p, "libxgboost.so") for p in dll_path]
|
||||
|
||||
@ -2093,7 +2093,17 @@ class XGBRanker(XGBModel, XGBRankerMixIn):
|
||||
|
||||
"""
|
||||
X, qid = _get_qid(X, None)
|
||||
Xyq = DMatrix(X, y, qid=qid)
|
||||
# fixme(jiamingy): base margin and group weight is not yet supported. We might
|
||||
# need to make extra special fields in the dataframe.
|
||||
Xyq = DMatrix(
|
||||
X,
|
||||
y,
|
||||
qid=qid,
|
||||
missing=self.missing,
|
||||
enable_categorical=self.enable_categorical,
|
||||
nthread=self.n_jobs,
|
||||
feature_types=self.feature_types,
|
||||
)
|
||||
if callable(self.eval_metric):
|
||||
metric = ltr_metric_decorator(self.eval_metric, self.n_jobs)
|
||||
result_str = self.get_booster().eval_set([(Xyq, "eval")], feval=metric)
|
||||
|
||||
@ -22,7 +22,7 @@ from typing import (
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from pyspark import SparkContext, cloudpickle
|
||||
from pyspark import RDD, SparkContext, cloudpickle
|
||||
from pyspark.ml import Estimator, Model
|
||||
from pyspark.ml.functions import array_to_vector, vector_to_array
|
||||
from pyspark.ml.linalg import VectorUDT
|
||||
@ -44,6 +44,7 @@ from pyspark.ml.util import (
|
||||
MLWritable,
|
||||
MLWriter,
|
||||
)
|
||||
from pyspark.resource import ResourceProfileBuilder, TaskResourceRequests
|
||||
from pyspark.sql import Column, DataFrame
|
||||
from pyspark.sql.functions import col, countDistinct, pandas_udf, rand, struct
|
||||
from pyspark.sql.types import (
|
||||
@ -59,11 +60,12 @@ from scipy.special import expit, softmax # pylint: disable=no-name-in-module
|
||||
|
||||
import xgboost
|
||||
from xgboost import XGBClassifier
|
||||
from xgboost.compat import is_cudf_available
|
||||
from xgboost.compat import is_cudf_available, is_cupy_available
|
||||
from xgboost.core import Booster, _check_distributed_params
|
||||
from xgboost.sklearn import DEFAULT_N_ESTIMATORS, XGBModel, _can_use_qdm
|
||||
from xgboost.training import train as worker_train
|
||||
|
||||
from .._typing import ArrayLike
|
||||
from .data import (
|
||||
_read_csr_matrix_from_unwrapped_spark_vec,
|
||||
alias,
|
||||
@ -87,6 +89,7 @@ from .utils import (
|
||||
_get_rabit_args,
|
||||
_get_spark_session,
|
||||
_is_local,
|
||||
_is_standalone_or_localcluster,
|
||||
deserialize_booster,
|
||||
deserialize_xgb_model,
|
||||
get_class_name,
|
||||
@ -241,6 +244,13 @@ class _SparkXGBParams(
|
||||
TypeConverters.toList,
|
||||
)
|
||||
|
||||
def set_device(self, value: str) -> "_SparkXGBParams":
|
||||
"""Set device, optional value: cpu, cuda, gpu"""
|
||||
_check_distributed_params({"device": value})
|
||||
assert value in ("cpu", "cuda", "gpu")
|
||||
self.set(self.device, value)
|
||||
return self
|
||||
|
||||
@classmethod
|
||||
def _xgb_cls(cls) -> Type[XGBModel]:
|
||||
"""
|
||||
@ -334,6 +344,54 @@ class _SparkXGBParams(
|
||||
predict_params[param.name] = self.getOrDefault(param)
|
||||
return predict_params
|
||||
|
||||
def _validate_gpu_params(self) -> None:
|
||||
"""Validate the gpu parameters and gpu configurations"""
|
||||
|
||||
if use_cuda(self.getOrDefault(self.device)) or self.getOrDefault(self.use_gpu):
|
||||
ss = _get_spark_session()
|
||||
sc = ss.sparkContext
|
||||
|
||||
if _is_local(sc):
|
||||
# Support GPU training in Spark local mode is just for debugging
|
||||
# purposes, so it's okay for printing the below warning instead of
|
||||
# checking the real gpu numbers and raising the exception.
|
||||
get_logger(self.__class__.__name__).warning(
|
||||
"You have enabled GPU in spark local mode. Please make sure your"
|
||||
" local node has at least %d GPUs",
|
||||
self.getOrDefault(self.num_workers),
|
||||
)
|
||||
else:
|
||||
executor_gpus = sc.getConf().get("spark.executor.resource.gpu.amount")
|
||||
if executor_gpus is None:
|
||||
raise ValueError(
|
||||
"The `spark.executor.resource.gpu.amount` is required for training"
|
||||
" on GPU."
|
||||
)
|
||||
|
||||
if not (ss.version >= "3.4.0" and _is_standalone_or_localcluster(sc)):
|
||||
# We will enable stage-level scheduling in spark 3.4.0+ which doesn't
|
||||
# require spark.task.resource.gpu.amount to be set explicitly
|
||||
gpu_per_task = sc.getConf().get("spark.task.resource.gpu.amount")
|
||||
if gpu_per_task is not None:
|
||||
if float(gpu_per_task) < 1.0:
|
||||
raise ValueError(
|
||||
"XGBoost doesn't support GPU fractional configurations. "
|
||||
"Please set `spark.task.resource.gpu.amount=spark.executor"
|
||||
".resource.gpu.amount`"
|
||||
)
|
||||
|
||||
if float(gpu_per_task) > 1.0:
|
||||
get_logger(self.__class__.__name__).warning(
|
||||
"%s GPUs for each Spark task is configured, but each "
|
||||
"XGBoost training task uses only 1 GPU.",
|
||||
gpu_per_task,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
"The `spark.task.resource.gpu.amount` is required for training"
|
||||
" on GPU."
|
||||
)
|
||||
|
||||
def _validate_params(self) -> None:
|
||||
# pylint: disable=too-many-branches
|
||||
init_model = self.getOrDefault("xgb_model")
|
||||
@ -413,53 +471,7 @@ class _SparkXGBParams(
|
||||
"`pyspark.ml.linalg.Vector` type."
|
||||
)
|
||||
|
||||
if use_cuda(self.getOrDefault(self.device)) or self.getOrDefault(self.use_gpu):
|
||||
gpu_per_task = (
|
||||
_get_spark_session()
|
||||
.sparkContext.getConf()
|
||||
.get("spark.task.resource.gpu.amount")
|
||||
)
|
||||
|
||||
is_local = _is_local(_get_spark_session().sparkContext)
|
||||
|
||||
if is_local:
|
||||
# checking spark local mode.
|
||||
if gpu_per_task is not None:
|
||||
raise RuntimeError(
|
||||
"The spark local mode does not support gpu configuration."
|
||||
"Please remove spark.executor.resource.gpu.amount and "
|
||||
"spark.task.resource.gpu.amount"
|
||||
)
|
||||
|
||||
# Support GPU training in Spark local mode is just for debugging
|
||||
# purposes, so it's okay for printing the below warning instead of
|
||||
# checking the real gpu numbers and raising the exception.
|
||||
get_logger(self.__class__.__name__).warning(
|
||||
"You have enabled GPU in spark local mode. Please make sure your"
|
||||
" local node has at least %d GPUs",
|
||||
self.getOrDefault(self.num_workers),
|
||||
)
|
||||
else:
|
||||
# checking spark non-local mode.
|
||||
if gpu_per_task is not None:
|
||||
if float(gpu_per_task) < 1.0:
|
||||
raise ValueError(
|
||||
"XGBoost doesn't support GPU fractional configurations. "
|
||||
"Please set `spark.task.resource.gpu.amount=spark.executor"
|
||||
".resource.gpu.amount`"
|
||||
)
|
||||
|
||||
if float(gpu_per_task) > 1.0:
|
||||
get_logger(self.__class__.__name__).warning(
|
||||
"%s GPUs for each Spark task is configured, but each "
|
||||
"XGBoost training task uses only 1 GPU.",
|
||||
gpu_per_task,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
"The `spark.task.resource.gpu.amount` is required for training"
|
||||
" on GPU."
|
||||
)
|
||||
self._validate_gpu_params()
|
||||
|
||||
|
||||
def _validate_and_convert_feature_col_as_float_col_list(
|
||||
@ -584,6 +596,8 @@ class _SparkXGBEstimator(Estimator, _SparkXGBParams, MLReadable, MLWritable):
|
||||
arbitrary_params_dict={},
|
||||
)
|
||||
|
||||
self.logger = get_logger(self.__class__.__name__)
|
||||
|
||||
def setParams(self, **kwargs: Any) -> None: # pylint: disable=invalid-name
|
||||
"""
|
||||
Set params for the estimator.
|
||||
@ -886,6 +900,116 @@ class _SparkXGBEstimator(Estimator, _SparkXGBParams, MLReadable, MLWritable):
|
||||
|
||||
return booster_params, train_call_kwargs_params, dmatrix_kwargs
|
||||
|
||||
def _skip_stage_level_scheduling(self) -> bool:
|
||||
# pylint: disable=too-many-return-statements
|
||||
"""Check if stage-level scheduling is not needed,
|
||||
return true to skip stage-level scheduling"""
|
||||
|
||||
if use_cuda(self.getOrDefault(self.device)) or self.getOrDefault(self.use_gpu):
|
||||
ss = _get_spark_session()
|
||||
sc = ss.sparkContext
|
||||
|
||||
if ss.version < "3.4.0":
|
||||
self.logger.info(
|
||||
"Stage-level scheduling in xgboost requires spark version 3.4.0+"
|
||||
)
|
||||
return True
|
||||
|
||||
if not _is_standalone_or_localcluster(sc):
|
||||
self.logger.info(
|
||||
"Stage-level scheduling in xgboost requires spark standalone or "
|
||||
"local-cluster mode"
|
||||
)
|
||||
return True
|
||||
|
||||
executor_cores = sc.getConf().get("spark.executor.cores")
|
||||
executor_gpus = sc.getConf().get("spark.executor.resource.gpu.amount")
|
||||
if executor_cores is None or executor_gpus is None:
|
||||
self.logger.info(
|
||||
"Stage-level scheduling in xgboost requires spark.executor.cores, "
|
||||
"spark.executor.resource.gpu.amount to be set."
|
||||
)
|
||||
return True
|
||||
|
||||
if int(executor_cores) == 1:
|
||||
# there will be only 1 task running at any time.
|
||||
self.logger.info(
|
||||
"Stage-level scheduling in xgboost requires spark.executor.cores > 1 "
|
||||
)
|
||||
return True
|
||||
|
||||
if int(executor_gpus) > 1:
|
||||
# For spark.executor.resource.gpu.amount > 1, we suppose user knows how to configure
|
||||
# to make xgboost run successfully.
|
||||
#
|
||||
self.logger.info(
|
||||
"Stage-level scheduling in xgboost will not work "
|
||||
"when spark.executor.resource.gpu.amount>1"
|
||||
)
|
||||
return True
|
||||
|
||||
task_gpu_amount = sc.getConf().get("spark.task.resource.gpu.amount")
|
||||
|
||||
if task_gpu_amount is None:
|
||||
# The ETL tasks will not grab a gpu when spark.task.resource.gpu.amount is not set,
|
||||
# but with stage-level scheduling, we can make training task grab the gpu.
|
||||
return False
|
||||
|
||||
if float(task_gpu_amount) == float(executor_gpus):
|
||||
# spark.executor.resource.gpu.amount=spark.task.resource.gpu.amount "
|
||||
# results in only 1 task running at a time, which may cause perf issue.
|
||||
return True
|
||||
|
||||
# We can enable stage-level scheduling
|
||||
return False
|
||||
|
||||
# CPU training doesn't require stage-level scheduling
|
||||
return True
|
||||
|
||||
def _try_stage_level_scheduling(self, rdd: RDD) -> RDD:
|
||||
"""Try to enable stage-level scheduling"""
|
||||
|
||||
if self._skip_stage_level_scheduling():
|
||||
return rdd
|
||||
|
||||
ss = _get_spark_session()
|
||||
|
||||
# executor_cores will not be None
|
||||
executor_cores = ss.sparkContext.getConf().get("spark.executor.cores")
|
||||
assert executor_cores is not None
|
||||
|
||||
# Spark-rapids is a project to leverage GPUs to accelerate spark SQL.
|
||||
# If spark-rapids is enabled, to avoid GPU OOM, we don't allow other
|
||||
# ETL gpu tasks running alongside training tasks.
|
||||
spark_plugins = ss.conf.get("spark.plugins", " ")
|
||||
assert spark_plugins is not None
|
||||
spark_rapids_sql_enabled = ss.conf.get("spark.rapids.sql.enabled", "true")
|
||||
assert spark_rapids_sql_enabled is not None
|
||||
|
||||
task_cores = (
|
||||
int(executor_cores)
|
||||
if "com.nvidia.spark.SQLPlugin" in spark_plugins
|
||||
and "true" == spark_rapids_sql_enabled.lower()
|
||||
else (int(executor_cores) // 2) + 1
|
||||
)
|
||||
|
||||
# Each training task requires cpu cores > total executor cores//2 + 1 which can
|
||||
# make sure the tasks be sent to different executors.
|
||||
#
|
||||
# Please note that we can't use GPU to limit the concurrent tasks because of
|
||||
# https://issues.apache.org/jira/browse/SPARK-45527.
|
||||
|
||||
task_gpus = 1.0
|
||||
treqs = TaskResourceRequests().cpus(task_cores).resource("gpu", task_gpus)
|
||||
rp = ResourceProfileBuilder().require(treqs).build
|
||||
|
||||
self.logger.info(
|
||||
"XGBoost training tasks require the resource(cores=%s, gpu=%s).",
|
||||
task_cores,
|
||||
task_gpus,
|
||||
)
|
||||
return rdd.withResources(rp)
|
||||
|
||||
def _fit(self, dataset: DataFrame) -> "_SparkXGBModel":
|
||||
# pylint: disable=too-many-statements, too-many-locals
|
||||
self._validate_params()
|
||||
@ -986,14 +1110,16 @@ class _SparkXGBEstimator(Estimator, _SparkXGBParams, MLReadable, MLWritable):
|
||||
)
|
||||
|
||||
def _run_job() -> Tuple[str, str]:
|
||||
ret = (
|
||||
rdd = (
|
||||
dataset.mapInPandas(
|
||||
_train_booster, schema="config string, booster string" # type: ignore
|
||||
_train_booster, # type: ignore
|
||||
schema="config string, booster string",
|
||||
)
|
||||
.rdd.barrier()
|
||||
.mapPartitions(lambda x: x)
|
||||
.collect()[0]
|
||||
)
|
||||
rdd_with_resource = self._try_stage_level_scheduling(rdd)
|
||||
ret = rdd_with_resource.collect()[0]
|
||||
return ret[0], ret[1]
|
||||
|
||||
get_logger("XGBoost-PySpark").info(
|
||||
@ -1117,12 +1243,111 @@ class _SparkXGBModel(Model, _SparkXGBParams, MLReadable, MLWritable):
|
||||
)
|
||||
return features_col, feature_col_names
|
||||
|
||||
def _get_pred_contrib_col_name(self) -> Optional[str]:
|
||||
"""Return the pred_contrib_col col name"""
|
||||
pred_contrib_col_name = None
|
||||
if (
|
||||
self.isDefined(self.pred_contrib_col)
|
||||
and self.getOrDefault(self.pred_contrib_col) != ""
|
||||
):
|
||||
pred_contrib_col_name = self.getOrDefault(self.pred_contrib_col)
|
||||
|
||||
return pred_contrib_col_name
|
||||
|
||||
def _out_schema(self) -> Tuple[bool, str]:
|
||||
"""Return the bool to indicate if it's a single prediction, true is single prediction,
|
||||
and the returned type of the user-defined function. The value must
|
||||
be a DDL-formatted type string."""
|
||||
|
||||
if self._get_pred_contrib_col_name() is not None:
|
||||
return False, f"{pred.prediction} double, {pred.pred_contrib} array<double>"
|
||||
|
||||
return True, "double"
|
||||
|
||||
def _get_predict_func(self) -> Callable:
|
||||
"""Return the true prediction function which will be running on the executor side"""
|
||||
|
||||
predict_params = self._gen_predict_params_dict()
|
||||
pred_contrib_col_name = self._get_pred_contrib_col_name()
|
||||
|
||||
def _predict(
|
||||
model: XGBModel, X: ArrayLike, base_margin: Optional[ArrayLike]
|
||||
) -> Union[pd.DataFrame, pd.Series]:
|
||||
data = {}
|
||||
preds = model.predict(
|
||||
X,
|
||||
base_margin=base_margin,
|
||||
validate_features=False,
|
||||
**predict_params,
|
||||
)
|
||||
data[pred.prediction] = pd.Series(preds)
|
||||
|
||||
if pred_contrib_col_name is not None:
|
||||
contribs = pred_contribs(model, X, base_margin)
|
||||
data[pred.pred_contrib] = pd.Series(list(contribs))
|
||||
return pd.DataFrame(data=data)
|
||||
|
||||
return data[pred.prediction]
|
||||
|
||||
return _predict
|
||||
|
||||
def _post_transform(self, dataset: DataFrame, pred_col: Column) -> DataFrame:
|
||||
"""Post process of transform"""
|
||||
prediction_col_name = self.getOrDefault(self.predictionCol)
|
||||
single_pred, _ = self._out_schema()
|
||||
|
||||
if single_pred:
|
||||
if prediction_col_name:
|
||||
dataset = dataset.withColumn(prediction_col_name, pred_col)
|
||||
else:
|
||||
pred_struct_col = "_prediction_struct"
|
||||
dataset = dataset.withColumn(pred_struct_col, pred_col)
|
||||
|
||||
if prediction_col_name:
|
||||
dataset = dataset.withColumn(
|
||||
prediction_col_name, getattr(col(pred_struct_col), pred.prediction)
|
||||
)
|
||||
|
||||
pred_contrib_col_name = self._get_pred_contrib_col_name()
|
||||
if pred_contrib_col_name is not None:
|
||||
dataset = dataset.withColumn(
|
||||
pred_contrib_col_name,
|
||||
array_to_vector(getattr(col(pred_struct_col), pred.pred_contrib)),
|
||||
)
|
||||
|
||||
dataset = dataset.drop(pred_struct_col)
|
||||
return dataset
|
||||
|
||||
def _gpu_transform(self) -> bool:
|
||||
"""If gpu is used to do the prediction, true to gpu prediction"""
|
||||
|
||||
if _is_local(_get_spark_session().sparkContext):
|
||||
# if it's local model, we just use the internal "device"
|
||||
return use_cuda(self.getOrDefault(self.device))
|
||||
|
||||
gpu_per_task = (
|
||||
_get_spark_session()
|
||||
.sparkContext.getConf()
|
||||
.get("spark.task.resource.gpu.amount")
|
||||
)
|
||||
|
||||
# User don't set gpu configurations, just use cpu
|
||||
if gpu_per_task is None:
|
||||
if use_cuda(self.getOrDefault(self.device)):
|
||||
get_logger("XGBoost-PySpark").warning(
|
||||
"Do the prediction on the CPUs since "
|
||||
"no gpu configurations are set"
|
||||
)
|
||||
return False
|
||||
|
||||
# User already sets the gpu configurations, we just use the internal "device".
|
||||
return use_cuda(self.getOrDefault(self.device))
|
||||
|
||||
def _transform(self, dataset: DataFrame) -> DataFrame:
|
||||
# pylint: disable=too-many-statements, too-many-locals
|
||||
# Save xgb_sklearn_model and predict_params to be local variable
|
||||
# to avoid the `self` object to be pickled to remote.
|
||||
xgb_sklearn_model = self._xgb_sklearn_model
|
||||
predict_params = self._gen_predict_params_dict()
|
||||
|
||||
has_base_margin = False
|
||||
if (
|
||||
@ -1137,79 +1362,92 @@ class _SparkXGBModel(Model, _SparkXGBParams, MLReadable, MLWritable):
|
||||
features_col, feature_col_names = self._get_feature_col(dataset)
|
||||
enable_sparse_data_optim = self.getOrDefault(self.enable_sparse_data_optim)
|
||||
|
||||
pred_contrib_col_name = None
|
||||
if (
|
||||
self.isDefined(self.pred_contrib_col)
|
||||
and self.getOrDefault(self.pred_contrib_col) != ""
|
||||
):
|
||||
pred_contrib_col_name = self.getOrDefault(self.pred_contrib_col)
|
||||
predict_func = self._get_predict_func()
|
||||
|
||||
single_pred = True
|
||||
schema = "double"
|
||||
if pred_contrib_col_name:
|
||||
single_pred = False
|
||||
schema = f"{pred.prediction} double, {pred.pred_contrib} array<double>"
|
||||
_, schema = self._out_schema()
|
||||
|
||||
is_local = _is_local(_get_spark_session().sparkContext)
|
||||
run_on_gpu = self._gpu_transform()
|
||||
|
||||
@pandas_udf(schema) # type: ignore
|
||||
def predict_udf(iterator: Iterator[pd.DataFrame]) -> Iterator[pd.Series]:
|
||||
assert xgb_sklearn_model is not None
|
||||
model = xgb_sklearn_model
|
||||
|
||||
from pyspark import TaskContext
|
||||
|
||||
context = TaskContext.get()
|
||||
assert context is not None
|
||||
|
||||
dev_ordinal = -1
|
||||
|
||||
if is_cudf_available():
|
||||
if is_local:
|
||||
if run_on_gpu and is_cupy_available():
|
||||
import cupy as cp # pylint: disable=import-error
|
||||
|
||||
total_gpus = cp.cuda.runtime.getDeviceCount()
|
||||
if total_gpus > 0:
|
||||
partition_id = context.partitionId()
|
||||
# For transform local mode, default the dev_ordinal to
|
||||
# (partition id) % gpus.
|
||||
dev_ordinal = partition_id % total_gpus
|
||||
elif run_on_gpu:
|
||||
dev_ordinal = _get_gpu_id(context)
|
||||
|
||||
if dev_ordinal >= 0:
|
||||
device = "cuda:" + str(dev_ordinal)
|
||||
get_logger("XGBoost-PySpark").info(
|
||||
"Do the inference with device: %s", device
|
||||
)
|
||||
model.set_params(device=device)
|
||||
else:
|
||||
get_logger("XGBoost-PySpark").info("Do the inference on the CPUs")
|
||||
else:
|
||||
msg = (
|
||||
"CUDF is unavailable, fallback the inference on the CPUs"
|
||||
if run_on_gpu
|
||||
else "Do the inference on the CPUs"
|
||||
)
|
||||
get_logger("XGBoost-PySpark").info(msg)
|
||||
|
||||
def to_gpu_if_possible(data: ArrayLike) -> ArrayLike:
|
||||
"""Move the data to gpu if possible"""
|
||||
if dev_ordinal >= 0:
|
||||
import cudf # pylint: disable=import-error
|
||||
import cupy as cp # pylint: disable=import-error
|
||||
|
||||
# We must set the device after import cudf, which will change the device id to 0
|
||||
# See https://github.com/rapidsai/cudf/issues/11386
|
||||
cp.cuda.runtime.setDevice(dev_ordinal) # pylint: disable=I1101
|
||||
df = cudf.DataFrame(data)
|
||||
del data
|
||||
return df
|
||||
return data
|
||||
|
||||
for data in iterator:
|
||||
if enable_sparse_data_optim:
|
||||
X = _read_csr_matrix_from_unwrapped_spark_vec(data)
|
||||
else:
|
||||
if feature_col_names is not None:
|
||||
X = data[feature_col_names]
|
||||
tmp = data[feature_col_names]
|
||||
else:
|
||||
X = stack_series(data[alias.data])
|
||||
tmp = stack_series(data[alias.data])
|
||||
X = to_gpu_if_possible(tmp)
|
||||
|
||||
if has_base_margin:
|
||||
base_margin = data[alias.margin].to_numpy()
|
||||
base_margin = to_gpu_if_possible(data[alias.margin])
|
||||
else:
|
||||
base_margin = None
|
||||
|
||||
data = {}
|
||||
preds = model.predict(
|
||||
X,
|
||||
base_margin=base_margin,
|
||||
validate_features=False,
|
||||
**predict_params,
|
||||
)
|
||||
data[pred.prediction] = pd.Series(preds)
|
||||
|
||||
if pred_contrib_col_name:
|
||||
contribs = pred_contribs(model, X, base_margin)
|
||||
data[pred.pred_contrib] = pd.Series(list(contribs))
|
||||
yield pd.DataFrame(data=data)
|
||||
else:
|
||||
yield data[pred.prediction]
|
||||
yield predict_func(model, X, base_margin)
|
||||
|
||||
if has_base_margin:
|
||||
pred_col = predict_udf(struct(*features_col, base_margin_col))
|
||||
else:
|
||||
pred_col = predict_udf(struct(*features_col))
|
||||
|
||||
prediction_col_name = self.getOrDefault(self.predictionCol)
|
||||
|
||||
if single_pred:
|
||||
dataset = dataset.withColumn(prediction_col_name, pred_col)
|
||||
else:
|
||||
pred_struct_col = "_prediction_struct"
|
||||
dataset = dataset.withColumn(pred_struct_col, pred_col)
|
||||
|
||||
dataset = dataset.withColumn(
|
||||
prediction_col_name, getattr(col(pred_struct_col), pred.prediction)
|
||||
)
|
||||
|
||||
if pred_contrib_col_name:
|
||||
dataset = dataset.withColumn(
|
||||
pred_contrib_col_name,
|
||||
array_to_vector(getattr(col(pred_struct_col), pred.pred_contrib)),
|
||||
)
|
||||
|
||||
dataset = dataset.drop(pred_struct_col)
|
||||
|
||||
return dataset
|
||||
return self._post_transform(dataset, pred_col)
|
||||
|
||||
|
||||
class _ClassificationModel( # pylint: disable=abstract-method
|
||||
@ -1221,22 +1459,21 @@ class _ClassificationModel( # pylint: disable=abstract-method
|
||||
.. Note:: This API is experimental.
|
||||
"""
|
||||
|
||||
def _transform(self, dataset: DataFrame) -> DataFrame:
|
||||
# pylint: disable=too-many-statements, too-many-locals
|
||||
# Save xgb_sklearn_model and predict_params to be local variable
|
||||
# to avoid the `self` object to be pickled to remote.
|
||||
xgb_sklearn_model = self._xgb_sklearn_model
|
||||
predict_params = self._gen_predict_params_dict()
|
||||
def _out_schema(self) -> Tuple[bool, str]:
|
||||
schema = (
|
||||
f"{pred.raw_prediction} array<double>, {pred.prediction} double,"
|
||||
f" {pred.probability} array<double>"
|
||||
)
|
||||
if self._get_pred_contrib_col_name() is not None:
|
||||
# We will force setting strict_shape to True when predicting contribs,
|
||||
# So, it will also output 3-D shape result.
|
||||
schema = f"{schema}, {pred.pred_contrib} array<array<double>>"
|
||||
|
||||
has_base_margin = False
|
||||
if (
|
||||
self.isDefined(self.base_margin_col)
|
||||
and self.getOrDefault(self.base_margin_col) != ""
|
||||
):
|
||||
has_base_margin = True
|
||||
base_margin_col = col(self.getOrDefault(self.base_margin_col)).alias(
|
||||
alias.margin
|
||||
)
|
||||
return False, schema
|
||||
|
||||
def _get_predict_func(self) -> Callable:
|
||||
predict_params = self._gen_predict_params_dict()
|
||||
pred_contrib_col_name = self._get_pred_contrib_col_name()
|
||||
|
||||
def transform_margin(margins: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
||||
if margins.ndim == 1:
|
||||
@ -1251,76 +1488,38 @@ class _ClassificationModel( # pylint: disable=abstract-method
|
||||
class_probs = softmax(raw_preds, axis=1)
|
||||
return raw_preds, class_probs
|
||||
|
||||
features_col, feature_col_names = self._get_feature_col(dataset)
|
||||
enable_sparse_data_optim = self.getOrDefault(self.enable_sparse_data_optim)
|
||||
def _predict(
|
||||
model: XGBModel, X: ArrayLike, base_margin: Optional[np.ndarray]
|
||||
) -> Union[pd.DataFrame, pd.Series]:
|
||||
margins = model.predict(
|
||||
X,
|
||||
base_margin=base_margin,
|
||||
output_margin=True,
|
||||
validate_features=False,
|
||||
**predict_params,
|
||||
)
|
||||
raw_preds, class_probs = transform_margin(margins)
|
||||
|
||||
pred_contrib_col_name = None
|
||||
if (
|
||||
self.isDefined(self.pred_contrib_col)
|
||||
and self.getOrDefault(self.pred_contrib_col) != ""
|
||||
):
|
||||
pred_contrib_col_name = self.getOrDefault(self.pred_contrib_col)
|
||||
# It seems that they use argmax of class probs,
|
||||
# not of margin to get the prediction (Note: scala implementation)
|
||||
preds = np.argmax(class_probs, axis=1)
|
||||
result: Dict[str, pd.Series] = {
|
||||
pred.raw_prediction: pd.Series(list(raw_preds)),
|
||||
pred.prediction: pd.Series(preds),
|
||||
pred.probability: pd.Series(list(class_probs)),
|
||||
}
|
||||
|
||||
schema = (
|
||||
f"{pred.raw_prediction} array<double>, {pred.prediction} double,"
|
||||
f" {pred.probability} array<double>"
|
||||
)
|
||||
if pred_contrib_col_name:
|
||||
# We will force setting strict_shape to True when predicting contribs,
|
||||
# So, it will also output 3-D shape result.
|
||||
schema = f"{schema}, {pred.pred_contrib} array<array<double>>"
|
||||
if pred_contrib_col_name is not None:
|
||||
contribs = pred_contribs(model, X, base_margin, strict_shape=True)
|
||||
result[pred.pred_contrib] = pd.Series(list(contribs.tolist()))
|
||||
|
||||
@pandas_udf(schema) # type: ignore
|
||||
def predict_udf(
|
||||
iterator: Iterator[Tuple[pd.Series, ...]]
|
||||
) -> Iterator[pd.DataFrame]:
|
||||
assert xgb_sklearn_model is not None
|
||||
model = xgb_sklearn_model
|
||||
for data in iterator:
|
||||
if enable_sparse_data_optim:
|
||||
X = _read_csr_matrix_from_unwrapped_spark_vec(data)
|
||||
else:
|
||||
if feature_col_names is not None:
|
||||
X = data[feature_col_names] # type: ignore
|
||||
else:
|
||||
X = stack_series(data[alias.data])
|
||||
return pd.DataFrame(data=result)
|
||||
|
||||
if has_base_margin:
|
||||
base_margin = stack_series(data[alias.margin])
|
||||
else:
|
||||
base_margin = None
|
||||
|
||||
margins = model.predict(
|
||||
X,
|
||||
base_margin=base_margin,
|
||||
output_margin=True,
|
||||
validate_features=False,
|
||||
**predict_params,
|
||||
)
|
||||
raw_preds, class_probs = transform_margin(margins)
|
||||
|
||||
# It seems that they use argmax of class probs,
|
||||
# not of margin to get the prediction (Note: scala implementation)
|
||||
preds = np.argmax(class_probs, axis=1)
|
||||
result: Dict[str, pd.Series] = {
|
||||
pred.raw_prediction: pd.Series(list(raw_preds)),
|
||||
pred.prediction: pd.Series(preds),
|
||||
pred.probability: pd.Series(list(class_probs)),
|
||||
}
|
||||
|
||||
if pred_contrib_col_name:
|
||||
contribs = pred_contribs(model, X, base_margin, strict_shape=True)
|
||||
result[pred.pred_contrib] = pd.Series(list(contribs.tolist()))
|
||||
|
||||
yield pd.DataFrame(data=result)
|
||||
|
||||
if has_base_margin:
|
||||
pred_struct = predict_udf(struct(*features_col, base_margin_col))
|
||||
else:
|
||||
pred_struct = predict_udf(struct(*features_col))
|
||||
return _predict
|
||||
|
||||
def _post_transform(self, dataset: DataFrame, pred_col: Column) -> DataFrame:
|
||||
pred_struct_col = "_prediction_struct"
|
||||
dataset = dataset.withColumn(pred_struct_col, pred_struct)
|
||||
dataset = dataset.withColumn(pred_struct_col, pred_col)
|
||||
|
||||
raw_prediction_col_name = self.getOrDefault(self.rawPredictionCol)
|
||||
if raw_prediction_col_name:
|
||||
@ -1342,7 +1541,8 @@ class _ClassificationModel( # pylint: disable=abstract-method
|
||||
array_to_vector(getattr(col(pred_struct_col), pred.probability)),
|
||||
)
|
||||
|
||||
if pred_contrib_col_name:
|
||||
pred_contrib_col_name = self._get_pred_contrib_col_name()
|
||||
if pred_contrib_col_name is not None:
|
||||
dataset = dataset.withColumn(
|
||||
pred_contrib_col_name,
|
||||
getattr(col(pred_struct_col), pred.pred_contrib),
|
||||
|
||||
@ -10,7 +10,7 @@ from threading import Thread
|
||||
from typing import Any, Callable, Dict, Optional, Set, Type
|
||||
|
||||
import pyspark
|
||||
from pyspark import BarrierTaskContext, SparkContext, SparkFiles
|
||||
from pyspark import BarrierTaskContext, SparkContext, SparkFiles, TaskContext
|
||||
from pyspark.sql.session import SparkSession
|
||||
|
||||
from xgboost import Booster, XGBModel, collective
|
||||
@ -129,7 +129,14 @@ def _is_local(spark_context: SparkContext) -> bool:
|
||||
return spark_context._jsc.sc().isLocal()
|
||||
|
||||
|
||||
def _get_gpu_id(task_context: BarrierTaskContext) -> int:
|
||||
def _is_standalone_or_localcluster(spark_context: SparkContext) -> bool:
|
||||
master = spark_context.getConf().get("spark.master")
|
||||
return master is not None and (
|
||||
master.startswith("spark://") or master.startswith("local-cluster")
|
||||
)
|
||||
|
||||
|
||||
def _get_gpu_id(task_context: TaskContext) -> int:
|
||||
"""Get the gpu id from the task resources"""
|
||||
if task_context is None:
|
||||
# This is a safety check.
|
||||
|
||||
@ -75,3 +75,28 @@ def run_ranking_qid_df(impl: ModuleType, tree_method: str) -> None:
|
||||
|
||||
with pytest.raises(ValueError, match="Either `group` or `qid`."):
|
||||
ranker.fit(df, y, eval_set=[(X, y)])
|
||||
|
||||
|
||||
def run_ranking_categorical(device: str) -> None:
|
||||
"""Test LTR with categorical features."""
|
||||
from sklearn.model_selection import cross_val_score
|
||||
|
||||
X, y = tm.make_categorical(
|
||||
n_samples=512, n_features=10, n_categories=3, onehot=False
|
||||
)
|
||||
rng = np.random.default_rng(1994)
|
||||
qid = rng.choice(3, size=y.shape[0])
|
||||
qid = np.sort(qid)
|
||||
X["qid"] = qid
|
||||
|
||||
ltr = xgb.XGBRanker(enable_categorical=True, device=device)
|
||||
ltr.fit(X, y)
|
||||
score = ltr.score(X, y)
|
||||
assert score > 0.9
|
||||
|
||||
ltr = xgb.XGBRanker(enable_categorical=True, device=device)
|
||||
|
||||
# test using the score function inside sklearn.
|
||||
scores = cross_val_score(ltr, X, y)
|
||||
for s in scores:
|
||||
assert s > 0.7
|
||||
|
||||
@ -52,7 +52,7 @@ inline XGBOOST_DEVICE bool InvalidCat(float cat) {
|
||||
*
|
||||
* Go to left if it's NOT the matching category, which matches one-hot encoding.
|
||||
*/
|
||||
inline XGBOOST_DEVICE bool Decision(common::Span<uint32_t const> cats, float cat) {
|
||||
inline XGBOOST_DEVICE bool Decision(common::Span<CatBitField::value_type const> cats, float cat) {
|
||||
KCatBitField const s_cats(cats);
|
||||
if (XGBOOST_EXPECT(InvalidCat(cat), false)) {
|
||||
return true;
|
||||
|
||||
@ -3,9 +3,11 @@
|
||||
*/
|
||||
#include "error_msg.h"
|
||||
|
||||
#include <mutex> // for call_once, once_flag
|
||||
#include <sstream> // for stringstream
|
||||
|
||||
#include "../collective/communicator-inl.h" // for GetRank
|
||||
#include "xgboost/context.h" // for Context
|
||||
#include "xgboost/logging.h"
|
||||
|
||||
namespace xgboost::error {
|
||||
@ -26,34 +28,43 @@ void WarnDeprecatedGPUHist() {
|
||||
}
|
||||
|
||||
void WarnManualUpdater() {
|
||||
bool static thread_local logged{false};
|
||||
if (logged) {
|
||||
return;
|
||||
}
|
||||
LOG(WARNING)
|
||||
<< "You have manually specified the `updater` parameter. The `tree_method` parameter "
|
||||
"will be ignored. Incorrect sequence of updaters will produce undefined "
|
||||
"behavior. For common uses, we recommend using `tree_method` parameter instead.";
|
||||
logged = true;
|
||||
static std::once_flag flag;
|
||||
std::call_once(flag, [] {
|
||||
LOG(WARNING)
|
||||
<< "You have manually specified the `updater` parameter. The `tree_method` parameter "
|
||||
"will be ignored. Incorrect sequence of updaters will produce undefined "
|
||||
"behavior. For common uses, we recommend using `tree_method` parameter instead.";
|
||||
});
|
||||
}
|
||||
|
||||
void WarnDeprecatedGPUId() {
|
||||
static thread_local bool logged{false};
|
||||
if (logged) {
|
||||
return;
|
||||
}
|
||||
auto msg = DeprecatedFunc("gpu_id", "2.0.0", "device");
|
||||
msg += " E.g. device=cpu/cuda/cuda:0";
|
||||
LOG(WARNING) << msg;
|
||||
logged = true;
|
||||
static std::once_flag flag;
|
||||
std::call_once(flag, [] {
|
||||
auto msg = DeprecatedFunc("gpu_id", "2.0.0", "device");
|
||||
msg += " E.g. device=cpu/cuda/cuda:0";
|
||||
LOG(WARNING) << msg;
|
||||
});
|
||||
}
|
||||
|
||||
void WarnEmptyDataset() {
|
||||
static thread_local bool logged{false};
|
||||
if (logged) {
|
||||
return;
|
||||
}
|
||||
LOG(WARNING) << "Empty dataset at worker: " << collective::GetRank();
|
||||
logged = true;
|
||||
static std::once_flag flag;
|
||||
std::call_once(flag,
|
||||
[] { LOG(WARNING) << "Empty dataset at worker: " << collective::GetRank(); });
|
||||
}
|
||||
|
||||
void MismatchedDevices(Context const* booster, Context const* data) {
|
||||
static std::once_flag flag;
|
||||
std::call_once(flag, [&] {
|
||||
LOG(WARNING)
|
||||
<< "Falling back to prediction using DMatrix due to mismatched devices. This might "
|
||||
"lead to higher memory usage and slower performance. XGBoost is running on: "
|
||||
<< booster->DeviceName() << ", while the input data is on: " << data->DeviceName() << ".\n"
|
||||
<< R"(Potential solutions:
|
||||
- Use a data structure that matches the device ordinal in the booster.
|
||||
- Set the device for booster before call to inplace_predict.
|
||||
|
||||
This warning will only be shown once.
|
||||
)";
|
||||
});
|
||||
}
|
||||
} // namespace xgboost::error
|
||||
|
||||
@ -10,7 +10,8 @@
|
||||
#include <limits> // for numeric_limits
|
||||
#include <string> // for string
|
||||
|
||||
#include "xgboost/base.h" // for bst_feature_t
|
||||
#include "xgboost/base.h" // for bst_feature_t
|
||||
#include "xgboost/context.h" // for Context
|
||||
#include "xgboost/logging.h"
|
||||
#include "xgboost/string_view.h" // for StringView
|
||||
|
||||
@ -94,5 +95,7 @@ constexpr StringView InvalidCUDAOrdinal() {
|
||||
return "Invalid device. `device` is required to be CUDA and there must be at least one GPU "
|
||||
"available for using GPU.";
|
||||
}
|
||||
|
||||
void MismatchedDevices(Context const* booster, Context const* data);
|
||||
} // namespace xgboost::error
|
||||
#endif // XGBOOST_COMMON_ERROR_MSG_H_
|
||||
|
||||
@ -384,7 +384,8 @@ class PrivateMmapConstStream : public AlignedResourceReadStream {
|
||||
* @param length See the `length` parameter of `mmap` for details.
|
||||
*/
|
||||
explicit PrivateMmapConstStream(std::string path, std::size_t offset, std::size_t length)
|
||||
: AlignedResourceReadStream{std::make_shared<MmapResource>(path, offset, length)} {}
|
||||
: AlignedResourceReadStream{std::shared_ptr<MmapResource>{ // NOLINT
|
||||
new MmapResource{std::move(path), offset, length}}} {}
|
||||
~PrivateMmapConstStream() noexcept(false) override;
|
||||
};
|
||||
|
||||
|
||||
@ -76,7 +76,7 @@ class RefResourceView {
|
||||
|
||||
[[nodiscard]] size_type size() const { return size_; } // NOLINT
|
||||
[[nodiscard]] size_type size_bytes() const { // NOLINT
|
||||
return Span{data(), size()}.size_bytes();
|
||||
return Span<const value_type>{data(), size()}.size_bytes();
|
||||
}
|
||||
[[nodiscard]] value_type* data() { return ptr_; }; // NOLINT
|
||||
[[nodiscard]] value_type const* data() const { return ptr_; }; // NOLINT
|
||||
|
||||
@ -3,14 +3,23 @@
|
||||
*/
|
||||
#include "threading_utils.h"
|
||||
|
||||
#include <fstream>
|
||||
#include <string>
|
||||
#include <algorithm> // for max
|
||||
#include <exception> // for exception
|
||||
#include <filesystem> // for path, exists
|
||||
#include <fstream> // for ifstream
|
||||
#include <string> // for string
|
||||
|
||||
#include "xgboost/logging.h"
|
||||
#include "common.h" // for DivRoundUp
|
||||
|
||||
namespace xgboost {
|
||||
namespace common {
|
||||
int32_t GetCfsCPUCount() noexcept {
|
||||
namespace xgboost::common {
|
||||
/**
|
||||
* Modified from
|
||||
* github.com/psiha/sweater/blob/master/include/boost/sweater/hardware_concurrency.hpp
|
||||
*
|
||||
* MIT License: Copyright (c) 2016 Domagoj Šarić
|
||||
*/
|
||||
std::int32_t GetCGroupV1Count(std::filesystem::path const& quota_path,
|
||||
std::filesystem::path const& peroid_path) {
|
||||
#if defined(__linux__)
|
||||
// https://bugs.openjdk.java.net/browse/JDK-8146115
|
||||
// http://hg.openjdk.java.net/jdk/hs/rev/7f22774a5f42
|
||||
@ -31,8 +40,8 @@ int32_t GetCfsCPUCount() noexcept {
|
||||
}
|
||||
};
|
||||
// complete fair scheduler from Linux
|
||||
auto const cfs_quota(read_int("/sys/fs/cgroup/cpu/cpu.cfs_quota_us"));
|
||||
auto const cfs_period(read_int("/sys/fs/cgroup/cpu/cpu.cfs_period_us"));
|
||||
auto const cfs_quota(read_int(quota_path.c_str()));
|
||||
auto const cfs_period(read_int(peroid_path.c_str()));
|
||||
if ((cfs_quota > 0) && (cfs_period > 0)) {
|
||||
return std::max(cfs_quota / cfs_period, 1);
|
||||
}
|
||||
@ -40,6 +49,47 @@ int32_t GetCfsCPUCount() noexcept {
|
||||
return -1;
|
||||
}
|
||||
|
||||
std::int32_t GetCGroupV2Count(std::filesystem::path const& bandwidth_path) noexcept(true) {
|
||||
std::int32_t cnt{-1};
|
||||
#if defined(__linux__)
|
||||
namespace fs = std::filesystem;
|
||||
|
||||
std::int32_t a{0}, b{0};
|
||||
|
||||
auto warn = [] { LOG(WARNING) << "Invalid cgroupv2 file."; };
|
||||
try {
|
||||
std::ifstream fin{bandwidth_path, std::ios::in};
|
||||
fin >> a;
|
||||
fin >> b;
|
||||
} catch (std::exception const&) {
|
||||
warn();
|
||||
return cnt;
|
||||
}
|
||||
if (a > 0 && b > 0) {
|
||||
cnt = std::max(common::DivRoundUp(a, b), 1);
|
||||
}
|
||||
#endif // defined(__linux__)
|
||||
return cnt;
|
||||
}
|
||||
|
||||
std::int32_t GetCfsCPUCount() noexcept {
|
||||
namespace fs = std::filesystem;
|
||||
fs::path const bandwidth_path{"/sys/fs/cgroup/cpu.max"};
|
||||
auto has_v2 = fs::exists(bandwidth_path);
|
||||
if (has_v2) {
|
||||
return GetCGroupV2Count(bandwidth_path);
|
||||
}
|
||||
|
||||
fs::path const quota_path{"/sys/fs/cgroup/cpu/cpu.cfs_quota_us"};
|
||||
fs::path const peroid_path{"/sys/fs/cgroup/cpu/cpu.cfs_period_us"};
|
||||
auto has_v1 = fs::exists(quota_path) && fs::exists(peroid_path);
|
||||
if (has_v1) {
|
||||
return GetCGroupV1Count(quota_path, peroid_path);
|
||||
}
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
std::int32_t OmpGetNumThreads(std::int32_t n_threads) {
|
||||
// Don't use parallel if we are in a parallel region.
|
||||
if (omp_in_parallel()) {
|
||||
@ -54,5 +104,4 @@ std::int32_t OmpGetNumThreads(std::int32_t n_threads) {
|
||||
n_threads = std::max(n_threads, 1);
|
||||
return n_threads;
|
||||
}
|
||||
} // namespace common
|
||||
} // namespace xgboost
|
||||
} // namespace xgboost::common
|
||||
|
||||
@ -253,11 +253,6 @@ inline std::int32_t OmpGetThreadLimit() {
|
||||
* \brief Get thread limit from CFS.
|
||||
*
|
||||
* This function has non-trivial overhead and should not be called repeatly.
|
||||
*
|
||||
* Modified from
|
||||
* github.com/psiha/sweater/blob/master/include/boost/sweater/hardware_concurrency.hpp
|
||||
*
|
||||
* MIT License: Copyright (c) 2016 Domagoj Šarić
|
||||
*/
|
||||
std::int32_t GetCfsCPUCount() noexcept;
|
||||
|
||||
|
||||
@ -55,6 +55,7 @@ std::shared_ptr<DMatrix> CreateDMatrixFromProxy(Context const *ctx,
|
||||
}
|
||||
|
||||
CHECK(p_fmat) << "Failed to fallback.";
|
||||
p_fmat->Info() = proxy->Info().Copy();
|
||||
return p_fmat;
|
||||
}
|
||||
} // namespace xgboost::data
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
/*!
|
||||
* Copyright 2014-2022 by XGBoost Contributors
|
||||
/**
|
||||
* Copyright 2014-2023, XGBoost Contributors
|
||||
* \file gblinear.cc
|
||||
* \brief Implementation of Linear booster, with L1/L2 regularization: Elastic Net
|
||||
* the update rule is parallel coordinate descent (shotgun)
|
||||
@ -26,9 +26,9 @@
|
||||
#include "../common/timer.h"
|
||||
#include "../common/common.h"
|
||||
#include "../common/threading_utils.h"
|
||||
#include "../common/error_msg.h"
|
||||
|
||||
namespace xgboost {
|
||||
namespace gbm {
|
||||
namespace xgboost::gbm {
|
||||
|
||||
DMLC_REGISTRY_FILE_TAG(gblinear);
|
||||
|
||||
@ -83,7 +83,16 @@ class GBLinear : public GradientBooster {
|
||||
}
|
||||
param_.UpdateAllowUnknown(cfg);
|
||||
param_.CheckGPUSupport();
|
||||
updater_.reset(LinearUpdater::Create(param_.updater, ctx_));
|
||||
if (param_.updater == "gpu_coord_descent") {
|
||||
LOG(WARNING) << error::DeprecatedFunc("gpu_coord_descent", "2.0.0",
|
||||
R"(device="cuda", updater="coord_descent")");
|
||||
}
|
||||
|
||||
if (param_.updater == "coord_descent" && ctx_->IsCUDA()) {
|
||||
updater_.reset(LinearUpdater::Create("gpu_coord_descent", ctx_));
|
||||
} else {
|
||||
updater_.reset(LinearUpdater::Create(param_.updater, ctx_));
|
||||
}
|
||||
updater_->Configure(cfg);
|
||||
monitor_.Init("GBLinear");
|
||||
}
|
||||
@ -354,5 +363,4 @@ XGBOOST_REGISTER_GBM(GBLinear, "gblinear")
|
||||
.set_body([](LearnerModelParam const* booster_config, Context const* ctx) {
|
||||
return new GBLinear(booster_config, ctx);
|
||||
});
|
||||
} // namespace gbm
|
||||
} // namespace xgboost
|
||||
} // namespace xgboost::gbm
|
||||
|
||||
@ -85,25 +85,6 @@ bool UpdatersMatched(std::vector<std::string> updater_seq,
|
||||
return name == up->Name();
|
||||
});
|
||||
}
|
||||
|
||||
void MismatchedDevices(Context const* booster, Context const* data) {
|
||||
bool thread_local static logged{false};
|
||||
if (logged) {
|
||||
return;
|
||||
}
|
||||
LOG(WARNING) << "Falling back to prediction using DMatrix due to mismatched devices. This might "
|
||||
"lead to higher memory usage and slower performance. XGBoost is running on: "
|
||||
<< booster->DeviceName() << ", while the input data is on: " << data->DeviceName()
|
||||
<< ".\n"
|
||||
<< R"(Potential solutions:
|
||||
- Use a data structure that matches the device ordinal in the booster.
|
||||
- Set the device for booster before call to inplace_predict.
|
||||
|
||||
This warning will only be shown once for each thread. Subsequent warnings made by the
|
||||
current thread will be suppressed.
|
||||
)";
|
||||
logged = true;
|
||||
}
|
||||
} // namespace
|
||||
|
||||
void GBTree::Configure(Args const& cfg) {
|
||||
@ -146,14 +127,6 @@ void GBTree::Configure(Args const& cfg) {
|
||||
if (specified_updater_) {
|
||||
error::WarnManualUpdater();
|
||||
}
|
||||
|
||||
if (model_.learner_model_param->IsVectorLeaf()) {
|
||||
CHECK(tparam_.tree_method == TreeMethod::kHist || tparam_.tree_method == TreeMethod::kAuto)
|
||||
<< "Only the hist tree method is supported for building multi-target trees with vector "
|
||||
"leaf.";
|
||||
CHECK(ctx_->IsCPU()) << "GPU is not yet supported for vector leaf.";
|
||||
}
|
||||
|
||||
LOG(DEBUG) << "Using tree method: " << static_cast<int>(tparam_.tree_method);
|
||||
|
||||
if (!specified_updater_) {
|
||||
@ -225,6 +198,13 @@ void GBTree::UpdateTreeLeaf(DMatrix const* p_fmat, HostDeviceVector<float> const
|
||||
|
||||
void GBTree::DoBoost(DMatrix* p_fmat, HostDeviceVector<GradientPair>* in_gpair,
|
||||
PredictionCacheEntry* predt, ObjFunction const* obj) {
|
||||
if (model_.learner_model_param->IsVectorLeaf()) {
|
||||
CHECK(tparam_.tree_method == TreeMethod::kHist || tparam_.tree_method == TreeMethod::kAuto)
|
||||
<< "Only the hist tree method is supported for building multi-target trees with vector "
|
||||
"leaf.";
|
||||
CHECK(ctx_->IsCPU()) << "GPU is not yet supported for vector leaf.";
|
||||
}
|
||||
|
||||
TreesOneIter new_trees;
|
||||
bst_target_t const n_groups = model_.learner_model_param->OutputLength();
|
||||
monitor_.Start("BoostNewTrees");
|
||||
@ -555,7 +535,7 @@ void GBTree::InplacePredict(std::shared_ptr<DMatrix> p_m, float missing,
|
||||
auto [tree_begin, tree_end] = detail::LayerToTree(model_, layer_begin, layer_end);
|
||||
CHECK_LE(tree_end, model_.trees.size()) << "Invalid number of trees.";
|
||||
if (p_m->Ctx()->Device() != this->ctx_->Device()) {
|
||||
MismatchedDevices(this->ctx_, p_m->Ctx());
|
||||
error::MismatchedDevices(this->ctx_, p_m->Ctx());
|
||||
CHECK_EQ(out_preds->version, 0);
|
||||
auto proxy = std::dynamic_pointer_cast<data::DMatrixProxy>(p_m);
|
||||
CHECK(proxy) << error::InplacePredictProxy();
|
||||
@ -808,7 +788,7 @@ class Dart : public GBTree {
|
||||
auto n_groups = model_.learner_model_param->num_output_group;
|
||||
|
||||
if (ctx_->Device() != p_fmat->Ctx()->Device()) {
|
||||
MismatchedDevices(ctx_, p_fmat->Ctx());
|
||||
error::MismatchedDevices(ctx_, p_fmat->Ctx());
|
||||
auto proxy = std::dynamic_pointer_cast<data::DMatrixProxy>(p_fmat);
|
||||
CHECK(proxy) << error::InplacePredictProxy();
|
||||
auto p_fmat = data::CreateDMatrixFromProxy(ctx_, proxy, missing);
|
||||
|
||||
@ -1317,7 +1317,9 @@ class LearnerImpl : public LearnerIO {
|
||||
if (metrics_.empty() && tparam_.disable_default_eval_metric <= 0) {
|
||||
metrics_.emplace_back(Metric::Create(obj_->DefaultEvalMetric(), &ctx_));
|
||||
auto config = obj_->DefaultMetricConfig();
|
||||
metrics_.back()->LoadConfig(config);
|
||||
if (!IsA<Null>(config)) {
|
||||
metrics_.back()->LoadConfig(config);
|
||||
}
|
||||
metrics_.back()->Configure({cfg_.begin(), cfg_.end()});
|
||||
}
|
||||
|
||||
|
||||
@ -9,8 +9,7 @@
|
||||
#include "coordinate_common.h"
|
||||
#include "xgboost/json.h"
|
||||
|
||||
namespace xgboost {
|
||||
namespace linear {
|
||||
namespace xgboost::linear {
|
||||
|
||||
DMLC_REGISTER_PARAMETER(CoordinateParam);
|
||||
DMLC_REGISTRY_FILE_TAG(updater_coordinate);
|
||||
@ -39,8 +38,9 @@ class CoordinateUpdater : public LinearUpdater {
|
||||
FromJson(config.at("linear_train_param"), &tparam_);
|
||||
FromJson(config.at("coordinate_param"), &cparam_);
|
||||
}
|
||||
void SaveConfig(Json* p_out) const override {
|
||||
auto& out = *p_out;
|
||||
void SaveConfig(Json *p_out) const override {
|
||||
LOG(DEBUG) << "Save config for CPU updater.";
|
||||
auto &out = *p_out;
|
||||
out["linear_train_param"] = ToJson(tparam_);
|
||||
out["coordinate_param"] = ToJson(cparam_);
|
||||
}
|
||||
@ -99,5 +99,4 @@ class CoordinateUpdater : public LinearUpdater {
|
||||
XGBOOST_REGISTER_LINEAR_UPDATER(CoordinateUpdater, "coord_descent")
|
||||
.describe("Update linear model according to coordinate descent algorithm.")
|
||||
.set_body([]() { return new CoordinateUpdater(); });
|
||||
} // namespace linear
|
||||
} // namespace xgboost
|
||||
} // namespace xgboost::linear
|
||||
|
||||
@ -15,8 +15,7 @@
|
||||
#include "../common/timer.h"
|
||||
#include "./param.h"
|
||||
|
||||
namespace xgboost {
|
||||
namespace linear {
|
||||
namespace xgboost::linear {
|
||||
|
||||
DMLC_REGISTRY_FILE_TAG(updater_gpu_coordinate);
|
||||
|
||||
@ -29,7 +28,7 @@ DMLC_REGISTRY_FILE_TAG(updater_gpu_coordinate);
|
||||
class GPUCoordinateUpdater : public LinearUpdater { // NOLINT
|
||||
public:
|
||||
// set training parameter
|
||||
void Configure(Args const& args) override {
|
||||
void Configure(Args const &args) override {
|
||||
tparam_.UpdateAllowUnknown(args);
|
||||
coord_param_.UpdateAllowUnknown(args);
|
||||
selector_.reset(FeatureSelector::Create(tparam_.feature_selector));
|
||||
@ -41,8 +40,9 @@ class GPUCoordinateUpdater : public LinearUpdater { // NOLINT
|
||||
FromJson(config.at("linear_train_param"), &tparam_);
|
||||
FromJson(config.at("coordinate_param"), &coord_param_);
|
||||
}
|
||||
void SaveConfig(Json* p_out) const override {
|
||||
auto& out = *p_out;
|
||||
void SaveConfig(Json *p_out) const override {
|
||||
LOG(DEBUG) << "Save config for GPU updater.";
|
||||
auto &out = *p_out;
|
||||
out["linear_train_param"] = ToJson(tparam_);
|
||||
out["coordinate_param"] = ToJson(coord_param_);
|
||||
}
|
||||
@ -101,10 +101,9 @@ class GPUCoordinateUpdater : public LinearUpdater { // NOLINT
|
||||
monitor_.Stop("LazyInitDevice");
|
||||
|
||||
monitor_.Start("UpdateGpair");
|
||||
auto &in_gpair_host = in_gpair->ConstHostVector();
|
||||
// Update gpair
|
||||
if (ctx_->gpu_id >= 0) {
|
||||
this->UpdateGpair(in_gpair_host);
|
||||
this->UpdateGpair(in_gpair->ConstHostVector());
|
||||
}
|
||||
monitor_.Stop("UpdateGpair");
|
||||
|
||||
@ -249,5 +248,4 @@ XGBOOST_REGISTER_LINEAR_UPDATER(GPUCoordinateUpdater, "gpu_coord_descent")
|
||||
"Update linear model according to coordinate descent algorithm. GPU "
|
||||
"accelerated.")
|
||||
.set_body([]() { return new GPUCoordinateUpdater(); });
|
||||
} // namespace linear
|
||||
} // namespace xgboost
|
||||
} // namespace xgboost::linear
|
||||
|
||||
@ -268,6 +268,13 @@ class PseudoHuberRegression : public FitIntercept {
|
||||
}
|
||||
FromJson(in["pseudo_huber_param"], ¶m_);
|
||||
}
|
||||
[[nodiscard]] Json DefaultMetricConfig() const override {
|
||||
CHECK(param_.GetInitialised());
|
||||
Json config{Object{}};
|
||||
config["name"] = String{this->DefaultEvalMetric()};
|
||||
config["pseudo_huber_param"] = ToJson(param_);
|
||||
return config;
|
||||
}
|
||||
};
|
||||
|
||||
XGBOOST_REGISTER_OBJECTIVE(PseudoHuberRegression, "reg:pseudohubererror")
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
/*!
|
||||
* Copyright 2020-2022 by XGBoost Contributors
|
||||
/**
|
||||
* Copyright 2020-2023, XGBoost Contributors
|
||||
*/
|
||||
#include <algorithm> // std::max
|
||||
#include <vector>
|
||||
@ -11,9 +11,7 @@
|
||||
#include "evaluate_splits.cuh"
|
||||
#include "expand_entry.cuh"
|
||||
|
||||
namespace xgboost {
|
||||
namespace tree {
|
||||
|
||||
namespace xgboost::tree {
|
||||
// With constraints
|
||||
XGBOOST_DEVICE float LossChangeMissing(const GradientPairInt64 &scan,
|
||||
const GradientPairInt64 &missing,
|
||||
@ -315,11 +313,11 @@ __device__ void SetCategoricalSplit(const EvaluateSplitSharedInputs &shared_inpu
|
||||
common::Span<common::CatBitField::value_type> out,
|
||||
DeviceSplitCandidate *p_out_split) {
|
||||
auto &out_split = *p_out_split;
|
||||
out_split.split_cats = common::CatBitField{out};
|
||||
auto out_cats = common::CatBitField{out};
|
||||
|
||||
// Simple case for one hot split
|
||||
if (common::UseOneHot(shared_inputs.FeatureBins(fidx), shared_inputs.param.max_cat_to_onehot)) {
|
||||
out_split.split_cats.Set(common::AsCat(out_split.thresh));
|
||||
out_cats.Set(common::AsCat(out_split.thresh));
|
||||
return;
|
||||
}
|
||||
|
||||
@ -339,7 +337,7 @@ __device__ void SetCategoricalSplit(const EvaluateSplitSharedInputs &shared_inpu
|
||||
assert(partition > 0 && "Invalid partition.");
|
||||
thrust::for_each(thrust::seq, beg, beg + partition, [&](size_t c) {
|
||||
auto cat = shared_inputs.feature_values[c - node_offset];
|
||||
out_split.SetCat(cat);
|
||||
out_cats.Set(common::AsCat(cat));
|
||||
});
|
||||
}
|
||||
|
||||
@ -427,8 +425,7 @@ void GPUHistEvaluator::EvaluateSplits(
|
||||
|
||||
if (split.is_cat) {
|
||||
SetCategoricalSplit(shared_inputs, d_sorted_idx, fidx, i,
|
||||
device_cats_accessor.GetNodeCatStorage(input.nidx),
|
||||
&out_splits[i]);
|
||||
device_cats_accessor.GetNodeCatStorage(input.nidx), &out_splits[i]);
|
||||
}
|
||||
|
||||
float base_weight =
|
||||
@ -460,6 +457,4 @@ GPUExpandEntry GPUHistEvaluator::EvaluateSingleSplit(
|
||||
cudaMemcpyDeviceToHost));
|
||||
return root_entry;
|
||||
}
|
||||
|
||||
} // namespace tree
|
||||
} // namespace xgboost
|
||||
} // namespace xgboost::tree
|
||||
|
||||
@ -37,8 +37,8 @@ struct EvaluateSplitSharedInputs {
|
||||
common::Span<const float> feature_values;
|
||||
common::Span<const float> min_fvalue;
|
||||
bool is_dense;
|
||||
XGBOOST_DEVICE auto Features() const { return feature_segments.size() - 1; }
|
||||
__device__ auto FeatureBins(bst_feature_t fidx) const {
|
||||
[[nodiscard]] XGBOOST_DEVICE auto Features() const { return feature_segments.size() - 1; }
|
||||
[[nodiscard]] __device__ std::uint32_t FeatureBins(bst_feature_t fidx) const {
|
||||
return feature_segments[fidx + 1] - feature_segments[fidx];
|
||||
}
|
||||
};
|
||||
@ -102,7 +102,7 @@ class GPUHistEvaluator {
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Get device category storage of nidx for internal calculation.
|
||||
* @brief Get device category storage of nidx for internal calculation.
|
||||
*/
|
||||
auto DeviceCatStorage(const std::vector<bst_node_t> &nidx) {
|
||||
if (!has_categoricals_) return CatAccessor{};
|
||||
@ -117,8 +117,8 @@ class GPUHistEvaluator {
|
||||
/**
|
||||
* \brief Get sorted index storage based on the left node of inputs.
|
||||
*/
|
||||
auto SortedIdx(int num_nodes, bst_feature_t total_bins) {
|
||||
if(!need_sort_histogram_) return common::Span<bst_feature_t>();
|
||||
auto SortedIdx(int num_nodes, bst_bin_t total_bins) {
|
||||
if (!need_sort_histogram_) return common::Span<bst_feature_t>{};
|
||||
cat_sorted_idx_.resize(num_nodes * total_bins);
|
||||
return dh::ToSpan(cat_sorted_idx_);
|
||||
}
|
||||
@ -142,12 +142,22 @@ class GPUHistEvaluator {
|
||||
* \brief Get host category storage for nidx. Different from the internal version, this
|
||||
* returns strictly 1 node.
|
||||
*/
|
||||
common::Span<CatST const> GetHostNodeCats(bst_node_t nidx) const {
|
||||
[[nodiscard]] common::Span<CatST const> GetHostNodeCats(bst_node_t nidx) const {
|
||||
copy_stream_.View().Sync();
|
||||
auto cats_out = common::Span<CatST const>{h_split_cats_}.subspan(
|
||||
nidx * node_categorical_storage_size_, node_categorical_storage_size_);
|
||||
return cats_out;
|
||||
}
|
||||
|
||||
[[nodiscard]] auto GetDeviceNodeCats(bst_node_t nidx) {
|
||||
copy_stream_.View().Sync();
|
||||
if (has_categoricals_) {
|
||||
CatAccessor accessor = {dh::ToSpan(split_cats_), node_categorical_storage_size_};
|
||||
return common::KCatBitField{accessor.GetNodeCatStorage(nidx)};
|
||||
} else {
|
||||
return common::KCatBitField{};
|
||||
}
|
||||
}
|
||||
/**
|
||||
* \brief Add a split to the internal tree evaluator.
|
||||
*/
|
||||
|
||||
@ -64,7 +64,6 @@ struct DeviceSplitCandidate {
|
||||
// split.
|
||||
bst_cat_t thresh{-1};
|
||||
|
||||
common::CatBitField split_cats;
|
||||
bool is_cat { false };
|
||||
|
||||
GradientPairInt64 left_sum;
|
||||
@ -72,12 +71,6 @@ struct DeviceSplitCandidate {
|
||||
|
||||
XGBOOST_DEVICE DeviceSplitCandidate() {} // NOLINT
|
||||
|
||||
template <typename T>
|
||||
XGBOOST_DEVICE void SetCat(T c) {
|
||||
this->split_cats.Set(common::AsCat(c));
|
||||
fvalue = std::max(this->fvalue, static_cast<float>(c));
|
||||
}
|
||||
|
||||
XGBOOST_DEVICE void Update(float loss_chg_in, DefaultDirection dir_in, float fvalue_in,
|
||||
int findex_in, GradientPairInt64 left_sum_in,
|
||||
GradientPairInt64 right_sum_in, bool cat,
|
||||
@ -100,22 +93,23 @@ struct DeviceSplitCandidate {
|
||||
*/
|
||||
XGBOOST_DEVICE void UpdateCat(float loss_chg_in, DefaultDirection dir_in, bst_cat_t thresh_in,
|
||||
bst_feature_t findex_in, GradientPairInt64 left_sum_in,
|
||||
GradientPairInt64 right_sum_in, GPUTrainingParam const& param, const GradientQuantiser& quantiser) {
|
||||
if (loss_chg_in > loss_chg &&
|
||||
quantiser.ToFloatingPoint(left_sum_in).GetHess() >= param.min_child_weight &&
|
||||
quantiser.ToFloatingPoint(right_sum_in).GetHess() >= param.min_child_weight) {
|
||||
loss_chg = loss_chg_in;
|
||||
dir = dir_in;
|
||||
fvalue = std::numeric_limits<float>::quiet_NaN();
|
||||
thresh = thresh_in;
|
||||
is_cat = true;
|
||||
left_sum = left_sum_in;
|
||||
right_sum = right_sum_in;
|
||||
findex = findex_in;
|
||||
}
|
||||
GradientPairInt64 right_sum_in, GPUTrainingParam const& param,
|
||||
const GradientQuantiser& quantiser) {
|
||||
if (loss_chg_in > loss_chg &&
|
||||
quantiser.ToFloatingPoint(left_sum_in).GetHess() >= param.min_child_weight &&
|
||||
quantiser.ToFloatingPoint(right_sum_in).GetHess() >= param.min_child_weight) {
|
||||
loss_chg = loss_chg_in;
|
||||
dir = dir_in;
|
||||
fvalue = std::numeric_limits<float>::quiet_NaN();
|
||||
thresh = thresh_in;
|
||||
is_cat = true;
|
||||
left_sum = left_sum_in;
|
||||
right_sum = right_sum_in;
|
||||
findex = findex_in;
|
||||
}
|
||||
}
|
||||
|
||||
XGBOOST_DEVICE bool IsValid() const { return loss_chg > 0.0f; }
|
||||
[[nodiscard]] XGBOOST_DEVICE bool IsValid() const { return loss_chg > 0.0f; }
|
||||
|
||||
friend std::ostream& operator<<(std::ostream& os, DeviceSplitCandidate const& c) {
|
||||
os << "loss_chg:" << c.loss_chg << ", "
|
||||
|
||||
@ -7,9 +7,9 @@
|
||||
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <limits>
|
||||
#include <memory>
|
||||
#include <utility>
|
||||
#include <cstddef> // for size_t
|
||||
#include <memory> // for unique_ptr, make_unique
|
||||
#include <utility> // for move
|
||||
#include <vector>
|
||||
|
||||
#include "../collective/communicator-inl.cuh"
|
||||
@ -216,9 +216,9 @@ struct GPUHistMakerDevice {
|
||||
void InitFeatureGroupsOnce() {
|
||||
if (!feature_groups) {
|
||||
CHECK(page);
|
||||
feature_groups.reset(new FeatureGroups(page->Cuts(), page->is_dense,
|
||||
dh::MaxSharedMemoryOptin(ctx_->gpu_id),
|
||||
sizeof(GradientPairPrecise)));
|
||||
feature_groups = std::make_unique<FeatureGroups>(page->Cuts(), page->is_dense,
|
||||
dh::MaxSharedMemoryOptin(ctx_->gpu_id),
|
||||
sizeof(GradientPairPrecise));
|
||||
}
|
||||
}
|
||||
|
||||
@ -244,10 +244,10 @@ struct GPUHistMakerDevice {
|
||||
|
||||
this->evaluator_.Reset(page->Cuts(), feature_types, dmat->Info().num_col_, param, ctx_->gpu_id);
|
||||
|
||||
quantiser.reset(new GradientQuantiser(this->gpair));
|
||||
quantiser = std::make_unique<GradientQuantiser>(this->gpair);
|
||||
|
||||
row_partitioner.reset(); // Release the device memory first before reallocating
|
||||
row_partitioner.reset(new RowPartitioner(ctx_->gpu_id, sample.sample_rows));
|
||||
row_partitioner = std::make_unique<RowPartitioner>(ctx_->gpu_id, sample.sample_rows);
|
||||
|
||||
// Init histogram
|
||||
hist.Init(ctx_->gpu_id, page->Cuts().TotalBins());
|
||||
@ -294,7 +294,7 @@ struct GPUHistMakerDevice {
|
||||
dh::TemporaryArray<GPUExpandEntry> entries(2 * candidates.size());
|
||||
// Store the feature set ptrs so they dont go out of scope before the kernel is called
|
||||
std::vector<std::shared_ptr<HostDeviceVector<bst_feature_t>>> feature_sets;
|
||||
for (size_t i = 0; i < candidates.size(); i++) {
|
||||
for (std::size_t i = 0; i < candidates.size(); i++) {
|
||||
auto candidate = candidates.at(i);
|
||||
int left_nidx = tree[candidate.nid].LeftChild();
|
||||
int right_nidx = tree[candidate.nid].RightChild();
|
||||
@ -327,14 +327,13 @@ struct GPUHistMakerDevice {
|
||||
d_node_inputs.data().get(), h_node_inputs.data(),
|
||||
h_node_inputs.size() * sizeof(EvaluateSplitInputs), cudaMemcpyDefault));
|
||||
|
||||
this->evaluator_.EvaluateSplits(nidx, max_active_features,
|
||||
dh::ToSpan(d_node_inputs), shared_inputs,
|
||||
dh::ToSpan(entries));
|
||||
this->evaluator_.EvaluateSplits(nidx, max_active_features, dh::ToSpan(d_node_inputs),
|
||||
shared_inputs, dh::ToSpan(entries));
|
||||
dh::safe_cuda(cudaMemcpyAsync(pinned_candidates_out.data(),
|
||||
entries.data().get(), sizeof(GPUExpandEntry) * entries.size(),
|
||||
cudaMemcpyDeviceToHost));
|
||||
dh::DefaultStream().Sync();
|
||||
}
|
||||
}
|
||||
|
||||
void BuildHist(int nidx) {
|
||||
auto d_node_hist = hist.GetNodeHistogram(nidx);
|
||||
@ -366,23 +365,29 @@ struct GPUHistMakerDevice {
|
||||
struct NodeSplitData {
|
||||
RegTree::Node split_node;
|
||||
FeatureType split_type;
|
||||
common::CatBitField node_cats;
|
||||
common::KCatBitField node_cats;
|
||||
};
|
||||
|
||||
void UpdatePosition(const std::vector<GPUExpandEntry>& candidates, RegTree* p_tree) {
|
||||
if (candidates.empty()) return;
|
||||
std::vector<int> nidx(candidates.size());
|
||||
std::vector<int> left_nidx(candidates.size());
|
||||
std::vector<int> right_nidx(candidates.size());
|
||||
void UpdatePosition(std::vector<GPUExpandEntry> const& candidates, RegTree* p_tree) {
|
||||
if (candidates.empty()) {
|
||||
return;
|
||||
}
|
||||
|
||||
std::vector<bst_node_t> nidx(candidates.size());
|
||||
std::vector<bst_node_t> left_nidx(candidates.size());
|
||||
std::vector<bst_node_t> right_nidx(candidates.size());
|
||||
std::vector<NodeSplitData> split_data(candidates.size());
|
||||
|
||||
for (size_t i = 0; i < candidates.size(); i++) {
|
||||
auto& e = candidates[i];
|
||||
auto const& e = candidates[i];
|
||||
RegTree::Node split_node = (*p_tree)[e.nid];
|
||||
auto split_type = p_tree->NodeSplitType(e.nid);
|
||||
nidx.at(i) = e.nid;
|
||||
left_nidx.at(i) = split_node.LeftChild();
|
||||
right_nidx.at(i) = split_node.RightChild();
|
||||
split_data.at(i) = NodeSplitData{split_node, split_type, e.split.split_cats};
|
||||
split_data.at(i) = NodeSplitData{split_node, split_type, evaluator_.GetDeviceNodeCats(e.nid)};
|
||||
|
||||
CHECK_EQ(split_type == FeatureType::kCategorical, e.split.is_cat);
|
||||
}
|
||||
|
||||
auto d_matrix = page->GetDeviceAccessor(ctx_->gpu_id);
|
||||
@ -390,7 +395,7 @@ struct GPUHistMakerDevice {
|
||||
nidx, left_nidx, right_nidx, split_data,
|
||||
[=] __device__(bst_uint ridx, const NodeSplitData& data) {
|
||||
// given a row index, returns the node id it belongs to
|
||||
bst_float cut_value = d_matrix.GetFvalue(ridx, data.split_node.SplitIndex());
|
||||
float cut_value = d_matrix.GetFvalue(ridx, data.split_node.SplitIndex());
|
||||
// Missing value
|
||||
bool go_left = true;
|
||||
if (isnan(cut_value)) {
|
||||
@ -620,7 +625,6 @@ struct GPUHistMakerDevice {
|
||||
CHECK(common::CheckNAN(candidate.split.fvalue));
|
||||
std::vector<common::CatBitField::value_type> split_cats;
|
||||
|
||||
CHECK_GT(candidate.split.split_cats.Bits().size(), 0);
|
||||
auto h_cats = this->evaluator_.GetHostNodeCats(candidate.nid);
|
||||
auto n_bins_feature = page->Cuts().FeatureBins(candidate.split.findex);
|
||||
split_cats.resize(common::CatBitField::ComputeStorageSize(n_bins_feature), 0);
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
ARG CUDA_VERSION_ARG
|
||||
FROM nvidia/cuda:$CUDA_VERSION_ARG-devel-centos7
|
||||
FROM nvcr.io/nvidia/cuda:$CUDA_VERSION_ARG-devel-centos7
|
||||
ARG CUDA_VERSION_ARG
|
||||
ARG NCCL_VERSION_ARG
|
||||
ARG RAPIDS_VERSION_ARG
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
ARG CUDA_VERSION_ARG
|
||||
FROM nvidia/cuda:$CUDA_VERSION_ARG-devel-centos7
|
||||
FROM nvcr.io/nvidia/cuda:$CUDA_VERSION_ARG-devel-centos7
|
||||
ARG CUDA_VERSION_ARG
|
||||
|
||||
# Install all basic requirements
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
ARG CUDA_VERSION_ARG
|
||||
FROM nvidia/cuda:$CUDA_VERSION_ARG-devel-centos7
|
||||
FROM nvcr.io/nvidia/cuda:$CUDA_VERSION_ARG-devel-centos7
|
||||
ARG CUDA_VERSION_ARG
|
||||
ARG NCCL_VERSION_ARG
|
||||
|
||||
|
||||
@ -148,7 +148,8 @@ TEST(IO, Resource) {
|
||||
fout << 1.0 << std::endl;
|
||||
fout.close();
|
||||
|
||||
auto resource = std::make_shared<MmapResource>(path, 0, sizeof(double));
|
||||
auto resource = std::shared_ptr<MmapResource>{
|
||||
new MmapResource{path, 0, sizeof(double)}};
|
||||
ASSERT_EQ(resource->Size(), sizeof(double));
|
||||
ASSERT_EQ(resource->Type(), ResourceHandler::kMmap);
|
||||
ASSERT_EQ(resource->DataAs<double>()[0], val);
|
||||
|
||||
42
tests/cpp/gbm/test_gblinear.cu
Normal file
42
tests/cpp/gbm/test_gblinear.cu
Normal file
@ -0,0 +1,42 @@
|
||||
/**
|
||||
* Copyright 2023, XGBoost Contributors
|
||||
*/
|
||||
#include <gtest/gtest.h>
|
||||
#include <xgboost/global_config.h> // for GlobalConfigThreadLocalStore
|
||||
#include <xgboost/json.h> // for Json, Object
|
||||
#include <xgboost/learner.h> // for Learner
|
||||
|
||||
#include <algorithm> // for transform
|
||||
#include <string> // for string
|
||||
#include <utility> // for swap
|
||||
|
||||
#include "../helpers.h" // for RandomDataGenerator
|
||||
|
||||
namespace xgboost {
|
||||
TEST(GBlinear, DispatchUpdater) {
|
||||
auto verbosity = 3;
|
||||
std::swap(GlobalConfigThreadLocalStore::Get()->verbosity, verbosity);
|
||||
|
||||
auto test = [](std::string device) {
|
||||
auto p_fmat = RandomDataGenerator{10, 10, 0.0f}.GenerateDMatrix(true);
|
||||
std::unique_ptr<Learner> learner{Learner::Create({p_fmat})};
|
||||
learner->SetParams(
|
||||
Args{{"booster", "gblinear"}, {"updater", "coord_descent"}, {"device", device}});
|
||||
learner->Configure();
|
||||
for (std::int32_t iter = 0; iter < 3; ++iter) {
|
||||
learner->UpdateOneIter(iter, p_fmat);
|
||||
}
|
||||
Json config{Object{}};
|
||||
::testing::internal::CaptureStderr();
|
||||
learner->SaveConfig(&config);
|
||||
auto str = ::testing::internal::GetCapturedStderr();
|
||||
std::transform(device.cbegin(), device.cend(), device.begin(),
|
||||
[](char c) { return std::toupper(c); });
|
||||
ASSERT_NE(str.find(device), std::string::npos);
|
||||
};
|
||||
test("cpu");
|
||||
test("gpu");
|
||||
|
||||
std::swap(GlobalConfigThreadLocalStore::Get()->verbosity, verbosity);
|
||||
}
|
||||
} // namespace xgboost
|
||||
@ -58,21 +58,6 @@ void TestInplaceFallback(Context const* ctx) {
|
||||
HostDeviceVector<float>* out_predt{nullptr};
|
||||
ConsoleLogger::Configure(Args{{"verbosity", "1"}});
|
||||
std::string output;
|
||||
// test whether the warning is raised
|
||||
#if !defined(_WIN32)
|
||||
// Windows has issue with CUDA and thread local storage. For some reason, on Windows a
|
||||
// cudaInitializationError is raised during destruction of `HostDeviceVector`. This
|
||||
// might be related to https://github.com/dmlc/xgboost/issues/5793
|
||||
::testing::internal::CaptureStderr();
|
||||
std::thread{[&] {
|
||||
// Launch a new thread to ensure a warning is raised as we prevent over-verbose
|
||||
// warning by using thread-local flags.
|
||||
learner->InplacePredict(p_m, PredictionType::kValue, std::numeric_limits<float>::quiet_NaN(),
|
||||
&out_predt, 0, 0);
|
||||
}}.join();
|
||||
output = testing::internal::GetCapturedStderr();
|
||||
ASSERT_NE(output.find("Falling back"), std::string::npos);
|
||||
#endif
|
||||
|
||||
learner->InplacePredict(p_m, PredictionType::kValue, std::numeric_limits<float>::quiet_NaN(),
|
||||
&out_predt, 0, 0);
|
||||
|
||||
@ -6,6 +6,7 @@
|
||||
#include <xgboost/objective.h>
|
||||
|
||||
#include "../helpers.h"
|
||||
#include "../objective_helpers.h"
|
||||
|
||||
TEST(Objective, UnknownFunction) {
|
||||
xgboost::ObjFunction* obj = nullptr;
|
||||
@ -43,4 +44,61 @@ TEST(Objective, PredTransform) {
|
||||
ASSERT_TRUE(predts.HostCanWrite());
|
||||
}
|
||||
}
|
||||
|
||||
class TestDefaultObjConfig : public ::testing::TestWithParam<std::string> {
|
||||
Context ctx_;
|
||||
|
||||
public:
|
||||
void Run(std::string objective) {
|
||||
auto Xy = MakeFmatForObjTest(objective);
|
||||
std::unique_ptr<Learner> learner{Learner::Create({Xy})};
|
||||
std::unique_ptr<ObjFunction> objfn{ObjFunction::Create(objective, &ctx_)};
|
||||
|
||||
learner->SetParam("objective", objective);
|
||||
if (objective.find("multi") != std::string::npos) {
|
||||
learner->SetParam("num_class", "3");
|
||||
objfn->Configure(Args{{"num_class", "3"}});
|
||||
} else if (objective.find("quantile") != std::string::npos) {
|
||||
learner->SetParam("quantile_alpha", "0.5");
|
||||
objfn->Configure(Args{{"quantile_alpha", "0.5"}});
|
||||
} else {
|
||||
objfn->Configure(Args{});
|
||||
}
|
||||
learner->Configure();
|
||||
learner->UpdateOneIter(0, Xy);
|
||||
learner->EvalOneIter(0, {Xy}, {"train"});
|
||||
Json config{Object{}};
|
||||
learner->SaveConfig(&config);
|
||||
auto jobj = get<Object const>(config["learner"]["objective"]);
|
||||
|
||||
ASSERT_TRUE(jobj.find("name") != jobj.cend());
|
||||
// FIXME(jiamingy): We should have the following check, but some legacy parameter like
|
||||
// "pos_weight", "delta_step" in objectives are not in metrics.
|
||||
|
||||
// if (jobj.size() > 1) {
|
||||
// ASSERT_FALSE(IsA<Null>(objfn->DefaultMetricConfig()));
|
||||
// }
|
||||
auto mconfig = objfn->DefaultMetricConfig();
|
||||
if (!IsA<Null>(mconfig)) {
|
||||
// make sure metric can handle it
|
||||
std::unique_ptr<Metric> metricfn{Metric::Create(get<String const>(mconfig["name"]), &ctx_)};
|
||||
metricfn->LoadConfig(mconfig);
|
||||
Json loaded(Object{});
|
||||
metricfn->SaveConfig(&loaded);
|
||||
metricfn->Configure(Args{});
|
||||
ASSERT_EQ(mconfig, loaded);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(TestDefaultObjConfig, Objective) {
|
||||
std::string objective = GetParam();
|
||||
this->Run(objective);
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(Objective, TestDefaultObjConfig,
|
||||
::testing::ValuesIn(MakeObjNamesForTest()),
|
||||
[](const ::testing::TestParamInfo<TestDefaultObjConfig::ParamType>& info) {
|
||||
return ObjTestNameGenerator(info);
|
||||
});
|
||||
} // namespace xgboost
|
||||
|
||||
31
tests/cpp/objective_helpers.cc
Normal file
31
tests/cpp/objective_helpers.cc
Normal file
@ -0,0 +1,31 @@
|
||||
/**
|
||||
* Copyright (c) 2023, XGBoost contributors
|
||||
*/
|
||||
#include "objective_helpers.h"
|
||||
|
||||
#include "../../src/common/linalg_op.h" // for begin, end
|
||||
#include "helpers.h" // for RandomDataGenerator
|
||||
|
||||
namespace xgboost {
|
||||
std::shared_ptr<DMatrix> MakeFmatForObjTest(std::string const& obj) {
|
||||
auto constexpr kRows = 10, kCols = 10;
|
||||
auto p_fmat = RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix(true);
|
||||
auto& h_upper = p_fmat->Info().labels_upper_bound_.HostVector();
|
||||
auto& h_lower = p_fmat->Info().labels_lower_bound_.HostVector();
|
||||
h_lower.resize(kRows);
|
||||
h_upper.resize(kRows);
|
||||
for (size_t i = 0; i < kRows; ++i) {
|
||||
h_lower[i] = 1;
|
||||
h_upper[i] = 10;
|
||||
}
|
||||
if (obj.find("rank:") != std::string::npos) {
|
||||
auto h_label = p_fmat->Info().labels.HostView();
|
||||
std::size_t k = 0;
|
||||
for (auto& v : h_label) {
|
||||
v = k % 2 == 0;
|
||||
++k;
|
||||
}
|
||||
}
|
||||
return p_fmat;
|
||||
};
|
||||
} // namespace xgboost
|
||||
@ -1,6 +1,8 @@
|
||||
/**
|
||||
* Copyright (c) 2023, XGBoost contributors
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
#include <dmlc/registry.h> // for Registry
|
||||
#include <gtest/gtest.h>
|
||||
#include <xgboost/objective.h> // for ObjFunctionReg
|
||||
@ -29,4 +31,6 @@ inline std::string ObjTestNameGenerator(const ::testing::TestParamInfo<ParamType
|
||||
}
|
||||
return name;
|
||||
};
|
||||
|
||||
std::shared_ptr<DMatrix> MakeFmatForObjTest(std::string const& obj);
|
||||
} // namespace xgboost
|
||||
|
||||
@ -655,33 +655,11 @@ TEST_F(InitBaseScore, InitWithPredict) { this->TestInitWithPredt(); }
|
||||
TEST_F(InitBaseScore, UpdateProcess) { this->TestUpdateProcess(); }
|
||||
|
||||
class TestColumnSplit : public ::testing::TestWithParam<std::string> {
|
||||
static auto MakeFmat(std::string const& obj) {
|
||||
auto constexpr kRows = 10, kCols = 10;
|
||||
auto p_fmat = RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix(true);
|
||||
auto& h_upper = p_fmat->Info().labels_upper_bound_.HostVector();
|
||||
auto& h_lower = p_fmat->Info().labels_lower_bound_.HostVector();
|
||||
h_lower.resize(kRows);
|
||||
h_upper.resize(kRows);
|
||||
for (size_t i = 0; i < kRows; ++i) {
|
||||
h_lower[i] = 1;
|
||||
h_upper[i] = 10;
|
||||
}
|
||||
if (obj.find("rank:") != std::string::npos) {
|
||||
auto h_label = p_fmat->Info().labels.HostView();
|
||||
std::size_t k = 0;
|
||||
for (auto& v : h_label) {
|
||||
v = k % 2 == 0;
|
||||
++k;
|
||||
}
|
||||
}
|
||||
return p_fmat;
|
||||
};
|
||||
|
||||
void TestBaseScore(std::string objective, float expected_base_score, Json expected_model) {
|
||||
auto const world_size = collective::GetWorldSize();
|
||||
auto const rank = collective::GetRank();
|
||||
|
||||
auto p_fmat = MakeFmat(objective);
|
||||
auto p_fmat = MakeFmatForObjTest(objective);
|
||||
std::shared_ptr<DMatrix> sliced{p_fmat->SliceCol(world_size, rank)};
|
||||
std::unique_ptr<Learner> learner{Learner::Create({sliced})};
|
||||
learner->SetParam("tree_method", "approx");
|
||||
@ -705,7 +683,7 @@ class TestColumnSplit : public ::testing::TestWithParam<std::string> {
|
||||
|
||||
public:
|
||||
void Run(std::string objective) {
|
||||
auto p_fmat = MakeFmat(objective);
|
||||
auto p_fmat = MakeFmatForObjTest(objective);
|
||||
std::unique_ptr<Learner> learner{Learner::Create({p_fmat})};
|
||||
learner->SetParam("tree_method", "approx");
|
||||
learner->SetParam("objective", objective);
|
||||
|
||||
@ -191,14 +191,32 @@ class TestGPUPredict:
|
||||
np.testing.assert_allclose(predt_0, predt_3)
|
||||
np.testing.assert_allclose(predt_0, predt_4)
|
||||
|
||||
def run_inplace_base_margin(self, booster, dtrain, X, base_margin):
|
||||
def run_inplace_base_margin(
|
||||
self, device: int, booster: xgb.Booster, dtrain: xgb.DMatrix, X, base_margin
|
||||
) -> None:
|
||||
import cupy as cp
|
||||
|
||||
booster.set_param({"device": f"cuda:{device}"})
|
||||
dtrain.set_info(base_margin=base_margin)
|
||||
from_inplace = booster.inplace_predict(data=X, base_margin=base_margin)
|
||||
from_dmatrix = booster.predict(dtrain)
|
||||
cp.testing.assert_allclose(from_inplace, from_dmatrix)
|
||||
|
||||
booster = booster.copy() # clear prediction cache.
|
||||
booster.set_param({"device": "cpu"})
|
||||
from_inplace = booster.inplace_predict(data=X, base_margin=base_margin)
|
||||
from_dmatrix = booster.predict(dtrain)
|
||||
cp.testing.assert_allclose(from_inplace, from_dmatrix)
|
||||
|
||||
booster = booster.copy() # clear prediction cache.
|
||||
base_margin = cp.asnumpy(base_margin)
|
||||
if hasattr(X, "values"):
|
||||
X = cp.asnumpy(X.values)
|
||||
booster.set_param({"device": f"cuda:{device}"})
|
||||
from_inplace = booster.inplace_predict(data=X, base_margin=base_margin)
|
||||
from_dmatrix = booster.predict(dtrain)
|
||||
cp.testing.assert_allclose(from_inplace, from_dmatrix, rtol=1e-6)
|
||||
|
||||
def run_inplace_predict_cupy(self, device: int) -> None:
|
||||
import cupy as cp
|
||||
|
||||
@ -244,7 +262,7 @@ class TestGPUPredict:
|
||||
run_threaded_predict(X, rows, predict_dense)
|
||||
|
||||
base_margin = cp_rng.randn(rows)
|
||||
self.run_inplace_base_margin(booster, dtrain, X, base_margin)
|
||||
self.run_inplace_base_margin(device, booster, dtrain, X, base_margin)
|
||||
|
||||
# Create a wide dataset
|
||||
X = cp_rng.randn(100, 10000)
|
||||
@ -318,7 +336,7 @@ class TestGPUPredict:
|
||||
run_threaded_predict(X, rows, predict_df)
|
||||
|
||||
base_margin = cudf.Series(rng.randn(rows))
|
||||
self.run_inplace_base_margin(booster, dtrain, X, base_margin)
|
||||
self.run_inplace_base_margin(0, booster, dtrain, X, base_margin)
|
||||
|
||||
@given(
|
||||
strategies.integers(1, 10), tm.make_dataset_strategy(), shap_parameter_strategy
|
||||
|
||||
@ -9,7 +9,7 @@ import pytest
|
||||
|
||||
import xgboost as xgb
|
||||
from xgboost import testing as tm
|
||||
from xgboost.testing.ranking import run_ranking_qid_df
|
||||
from xgboost.testing.ranking import run_ranking_categorical, run_ranking_qid_df
|
||||
|
||||
sys.path.append("tests/python")
|
||||
import test_with_sklearn as twskl # noqa
|
||||
@ -165,6 +165,11 @@ def test_ranking_qid_df():
|
||||
run_ranking_qid_df(cudf, "gpu_hist")
|
||||
|
||||
|
||||
@pytest.mark.skipif(**tm.no_pandas())
|
||||
def test_ranking_categorical() -> None:
|
||||
run_ranking_categorical(device="cuda")
|
||||
|
||||
|
||||
@pytest.mark.skipif(**tm.no_cupy())
|
||||
@pytest.mark.mgpu
|
||||
def test_device_ordinal() -> None:
|
||||
|
||||
@ -211,7 +211,7 @@ class TestPandas:
|
||||
y = np.random.randn(kRows)
|
||||
w = np.random.uniform(size=kRows).astype(np.float32)
|
||||
w_pd = pd.DataFrame(w)
|
||||
data = xgb.DMatrix(X, y, w_pd)
|
||||
data = xgb.DMatrix(X, y, weight=w_pd)
|
||||
|
||||
assert data.num_row() == kRows
|
||||
assert data.num_col() == kCols
|
||||
@ -301,14 +301,14 @@ class TestPandas:
|
||||
|
||||
@pytest.mark.parametrize("DMatrixT", [xgb.DMatrix, xgb.QuantileDMatrix])
|
||||
def test_nullable_type(self, DMatrixT) -> None:
|
||||
from pandas.api.types import is_categorical_dtype
|
||||
from xgboost.data import is_pd_cat_dtype
|
||||
|
||||
for orig, df in pd_dtypes():
|
||||
if hasattr(df.dtypes, "__iter__"):
|
||||
enable_categorical = any(is_categorical_dtype for dtype in df.dtypes)
|
||||
enable_categorical = any(is_pd_cat_dtype(dtype) for dtype in df.dtypes)
|
||||
else:
|
||||
# series
|
||||
enable_categorical = is_categorical_dtype(df.dtype)
|
||||
enable_categorical = is_pd_cat_dtype(df.dtype)
|
||||
|
||||
f0_orig = orig[orig.columns[0]] if isinstance(orig, pd.DataFrame) else orig
|
||||
f0 = df[df.columns[0]] if isinstance(df, pd.DataFrame) else df
|
||||
|
||||
@ -12,7 +12,7 @@ from sklearn.utils.estimator_checks import parametrize_with_checks
|
||||
|
||||
import xgboost as xgb
|
||||
from xgboost import testing as tm
|
||||
from xgboost.testing.ranking import run_ranking_qid_df
|
||||
from xgboost.testing.ranking import run_ranking_categorical, run_ranking_qid_df
|
||||
from xgboost.testing.shared import get_feature_weights, validate_data_initialization
|
||||
from xgboost.testing.updater import get_basescore
|
||||
|
||||
@ -173,6 +173,11 @@ def test_ranking():
|
||||
np.testing.assert_almost_equal(pred, pred_orig)
|
||||
|
||||
|
||||
@pytest.mark.skipif(**tm.no_pandas())
|
||||
def test_ranking_categorical() -> None:
|
||||
run_ranking_categorical(device="cpu")
|
||||
|
||||
|
||||
def test_ranking_metric() -> None:
|
||||
from sklearn.metrics import roc_auc_score
|
||||
|
||||
|
||||
@ -2,6 +2,7 @@ import json
|
||||
import logging
|
||||
import subprocess
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
import sklearn
|
||||
|
||||
@ -13,7 +14,7 @@ from pyspark.ml.linalg import Vectors
|
||||
from pyspark.ml.tuning import CrossValidator, ParamGridBuilder
|
||||
from pyspark.sql import SparkSession
|
||||
|
||||
from xgboost.spark import SparkXGBClassifier, SparkXGBRegressor
|
||||
from xgboost.spark import SparkXGBClassifier, SparkXGBRegressor, SparkXGBRegressorModel
|
||||
|
||||
gpu_discovery_script_path = "tests/test_distributed/test_gpu_with_spark/discover_gpu.sh"
|
||||
|
||||
@ -242,3 +243,33 @@ def test_sparkxgb_regressor_feature_cols_with_gpu(spark_diabetes_dataset_feature
|
||||
evaluator = RegressionEvaluator(metricName="rmse")
|
||||
rmse = evaluator.evaluate(pred_result_df)
|
||||
assert rmse <= 65.0
|
||||
|
||||
|
||||
def test_gpu_transform(spark_diabetes_dataset) -> None:
|
||||
regressor = SparkXGBRegressor(device="cuda", num_workers=num_workers)
|
||||
train_df, test_df = spark_diabetes_dataset
|
||||
model: SparkXGBRegressorModel = regressor.fit(train_df)
|
||||
|
||||
# The model trained with GPUs, and transform with GPU configurations.
|
||||
assert model._gpu_transform()
|
||||
|
||||
model.set_device("cpu")
|
||||
assert not model._gpu_transform()
|
||||
# without error
|
||||
cpu_rows = model.transform(test_df).select("prediction").collect()
|
||||
|
||||
regressor = SparkXGBRegressor(device="cpu", num_workers=num_workers)
|
||||
model = regressor.fit(train_df)
|
||||
|
||||
# The model trained with CPUs. Even with GPU configurations,
|
||||
# still prefer transforming with CPUs
|
||||
assert not model._gpu_transform()
|
||||
|
||||
# Set gpu transform explicitly.
|
||||
model.set_device("cuda")
|
||||
assert model._gpu_transform()
|
||||
# without error
|
||||
gpu_rows = model.transform(test_df).select("prediction").collect()
|
||||
|
||||
for cpu, gpu in zip(cpu_rows, gpu_rows):
|
||||
np.testing.assert_allclose(cpu.prediction, gpu.prediction, atol=1e-3)
|
||||
|
||||
@ -888,6 +888,34 @@ class TestPySparkLocal:
|
||||
clf = SparkXGBClassifier(device="cuda")
|
||||
clf._validate_params()
|
||||
|
||||
def test_gpu_transform(self, clf_data: ClfData) -> None:
|
||||
"""local mode"""
|
||||
classifier = SparkXGBClassifier(device="cpu")
|
||||
model: SparkXGBClassifierModel = classifier.fit(clf_data.cls_df_train)
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
path = "file:" + tmpdir
|
||||
model.write().overwrite().save(path)
|
||||
|
||||
# The model trained with CPU, transform defaults to cpu
|
||||
assert not model._gpu_transform()
|
||||
|
||||
# without error
|
||||
model.transform(clf_data.cls_df_test).collect()
|
||||
|
||||
model.set_device("cuda")
|
||||
assert model._gpu_transform()
|
||||
|
||||
model_loaded = SparkXGBClassifierModel.load(path)
|
||||
|
||||
# The model trained with CPU, transform defaults to cpu
|
||||
assert not model_loaded._gpu_transform()
|
||||
# without error
|
||||
model_loaded.transform(clf_data.cls_df_test).collect()
|
||||
|
||||
model_loaded.set_device("cuda")
|
||||
assert model_loaded._gpu_transform()
|
||||
|
||||
|
||||
class XgboostLocalTest(SparkTestCase):
|
||||
def setUp(self):
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user