Compare commits
5 Commits
master-roc
...
release_0.
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
1995db85e8 | ||
|
|
9c02016844 | ||
|
|
00e58bd08b | ||
|
|
b77a89ec28 | ||
|
|
cafc8bff58 |
@ -1,8 +1,8 @@
|
||||
Package: xgboost
|
||||
Type: Package
|
||||
Title: Extreme Gradient Boosting
|
||||
Version: 0.82.0.1
|
||||
Date: 2019-03-11
|
||||
Version: 0.90.0.1
|
||||
Date: 2019-05-18
|
||||
Authors@R: c(
|
||||
person("Tianqi", "Chen", role = c("aut"),
|
||||
email = "tianqi.tchen@gmail.com"),
|
||||
@ -52,7 +52,9 @@ Suggests:
|
||||
vcd (>= 1.3),
|
||||
testthat,
|
||||
lintr,
|
||||
igraph (>= 1.0.1)
|
||||
igraph (>= 1.0.1),
|
||||
jsonlite,
|
||||
float
|
||||
Depends:
|
||||
R (>= 3.3.0)
|
||||
Imports:
|
||||
|
||||
@ -95,6 +95,7 @@ xgb.get.handle <- function(object) {
|
||||
#' saveRDS(bst, "xgb.model.rds")
|
||||
#'
|
||||
#' bst1 <- readRDS("xgb.model.rds")
|
||||
#' if (file.exists("xgb.model.rds")) file.remove("xgb.model.rds")
|
||||
#' # the handle is invalid:
|
||||
#' print(bst1$handle)
|
||||
#'
|
||||
@ -418,6 +419,7 @@ predict.xgb.Booster.handle <- function(object, ...) {
|
||||
#'
|
||||
#' xgb.save(bst, 'xgb.model')
|
||||
#' bst1 <- xgb.load('xgb.model')
|
||||
#' if (file.exists('xgb.model')) file.remove('xgb.model')
|
||||
#' print(xgb.attr(bst1, "my_attribute"))
|
||||
#' print(xgb.attributes(bst1))
|
||||
#'
|
||||
|
||||
@ -19,6 +19,7 @@
|
||||
#' dtrain <- xgb.DMatrix(train$data, label=train$label)
|
||||
#' xgb.DMatrix.save(dtrain, 'xgb.DMatrix.data')
|
||||
#' dtrain <- xgb.DMatrix('xgb.DMatrix.data')
|
||||
#' if (file.exists('xgb.DMatrix.data')) file.remove('xgb.DMatrix.data')
|
||||
#' @export
|
||||
xgb.DMatrix <- function(data, info = list(), missing = NA, silent = FALSE, ...) {
|
||||
cnames <- NULL
|
||||
|
||||
@ -11,6 +11,7 @@
|
||||
#' dtrain <- xgb.DMatrix(train$data, label=train$label)
|
||||
#' xgb.DMatrix.save(dtrain, 'xgb.DMatrix.data')
|
||||
#' dtrain <- xgb.DMatrix('xgb.DMatrix.data')
|
||||
#' if (file.exists('xgb.DMatrix.data')) file.remove('xgb.DMatrix.data')
|
||||
#' @export
|
||||
xgb.DMatrix.save <- function(dmatrix, fname) {
|
||||
if (typeof(fname) != "character")
|
||||
|
||||
@ -28,6 +28,7 @@
|
||||
#' eta = 1, nthread = 2, nrounds = 2,objective = "binary:logistic")
|
||||
#' xgb.save(bst, 'xgb.model')
|
||||
#' bst <- xgb.load('xgb.model')
|
||||
#' if (file.exists('xgb.model')) file.remove('xgb.model')
|
||||
#' pred <- predict(bst, test$data)
|
||||
#' @export
|
||||
xgb.load <- function(modelfile) {
|
||||
|
||||
@ -27,6 +27,7 @@
|
||||
#' eta = 1, nthread = 2, nrounds = 2,objective = "binary:logistic")
|
||||
#' xgb.save(bst, 'xgb.model')
|
||||
#' bst <- xgb.load('xgb.model')
|
||||
#' if (file.exists('xgb.model')) file.remove('xgb.model')
|
||||
#' pred <- predict(bst, test$data)
|
||||
#' @export
|
||||
xgb.save <- function(model, fname) {
|
||||
|
||||
@ -1,3 +1,4 @@
|
||||
#!/bin/sh
|
||||
|
||||
rm -f src/Makevars
|
||||
rm -f CMakeLists.txt
|
||||
|
||||
@ -7,8 +7,8 @@
|
||||
\usage{
|
||||
\method{predict}{xgb.Booster}(object, newdata, missing = NA,
|
||||
outputmargin = FALSE, ntreelimit = NULL, predleaf = FALSE,
|
||||
predcontrib = FALSE, approxcontrib = FALSE,
|
||||
predinteraction = FALSE, reshape = FALSE, ...)
|
||||
predcontrib = FALSE, approxcontrib = FALSE, predinteraction = FALSE,
|
||||
reshape = FALSE, ...)
|
||||
|
||||
\method{predict}{xgb.Booster.handle}(object, ...)
|
||||
}
|
||||
|
||||
@ -39,6 +39,7 @@ bst <- xgboost(data = agaricus.train$data, label = agaricus.train$label, max_dep
|
||||
saveRDS(bst, "xgb.model.rds")
|
||||
|
||||
bst1 <- readRDS("xgb.model.rds")
|
||||
if (file.exists("xgb.model.rds")) file.remove("xgb.model.rds")
|
||||
# the handle is invalid:
|
||||
print(bst1$handle)
|
||||
|
||||
|
||||
@ -31,4 +31,5 @@ train <- agaricus.train
|
||||
dtrain <- xgb.DMatrix(train$data, label=train$label)
|
||||
xgb.DMatrix.save(dtrain, 'xgb.DMatrix.data')
|
||||
dtrain <- xgb.DMatrix('xgb.DMatrix.data')
|
||||
if (file.exists('xgb.DMatrix.data')) file.remove('xgb.DMatrix.data')
|
||||
}
|
||||
|
||||
@ -20,4 +20,5 @@ train <- agaricus.train
|
||||
dtrain <- xgb.DMatrix(train$data, label=train$label)
|
||||
xgb.DMatrix.save(dtrain, 'xgb.DMatrix.data')
|
||||
dtrain <- xgb.DMatrix('xgb.DMatrix.data')
|
||||
if (file.exists('xgb.DMatrix.data')) file.remove('xgb.DMatrix.data')
|
||||
}
|
||||
|
||||
@ -73,6 +73,7 @@ xgb.attributes(bst) <- list(a = 123, b = "abc")
|
||||
|
||||
xgb.save(bst, 'xgb.model')
|
||||
bst1 <- xgb.load('xgb.model')
|
||||
if (file.exists('xgb.model')) file.remove('xgb.model')
|
||||
print(xgb.attr(bst1, "my_attribute"))
|
||||
print(xgb.attributes(bst1))
|
||||
|
||||
|
||||
@ -4,12 +4,11 @@
|
||||
\alias{xgb.cv}
|
||||
\title{Cross Validation}
|
||||
\usage{
|
||||
xgb.cv(params = list(), data, nrounds, nfold, label = NULL,
|
||||
missing = NA, prediction = FALSE, showsd = TRUE,
|
||||
metrics = list(), obj = NULL, feval = NULL, stratified = TRUE,
|
||||
folds = NULL, verbose = TRUE, print_every_n = 1L,
|
||||
early_stopping_rounds = NULL, maximize = NULL, callbacks = list(),
|
||||
...)
|
||||
xgb.cv(params = list(), data, nrounds, nfold, label = NULL, missing = NA,
|
||||
prediction = FALSE, showsd = TRUE, metrics = list(), obj = NULL,
|
||||
feval = NULL, stratified = TRUE, folds = NULL, verbose = TRUE,
|
||||
print_every_n = 1L, early_stopping_rounds = NULL, maximize = NULL,
|
||||
callbacks = list(), ...)
|
||||
}
|
||||
\arguments{
|
||||
\item{params}{the list of parameters. Commonly used ones are:
|
||||
|
||||
@ -33,6 +33,7 @@ bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
|
||||
eta = 1, nthread = 2, nrounds = 2,objective = "binary:logistic")
|
||||
xgb.save(bst, 'xgb.model')
|
||||
bst <- xgb.load('xgb.model')
|
||||
if (file.exists('xgb.model')) file.remove('xgb.model')
|
||||
pred <- predict(bst, test$data)
|
||||
}
|
||||
\seealso{
|
||||
|
||||
@ -5,11 +5,11 @@
|
||||
\alias{xgb.plot.deepness}
|
||||
\title{Plot model trees deepness}
|
||||
\usage{
|
||||
xgb.ggplot.deepness(model = NULL, which = c("2x1", "max.depth",
|
||||
"med.depth", "med.weight"))
|
||||
xgb.ggplot.deepness(model = NULL, which = c("2x1", "max.depth", "med.depth",
|
||||
"med.weight"))
|
||||
|
||||
xgb.plot.deepness(model = NULL, which = c("2x1", "max.depth",
|
||||
"med.depth", "med.weight"), plot = TRUE, ...)
|
||||
xgb.plot.deepness(model = NULL, which = c("2x1", "max.depth", "med.depth",
|
||||
"med.weight"), plot = TRUE, ...)
|
||||
}
|
||||
\arguments{
|
||||
\item{model}{either an \code{xgb.Booster} model generated by the \code{xgb.train} function
|
||||
|
||||
@ -9,8 +9,8 @@ xgb.ggplot.importance(importance_matrix = NULL, top_n = NULL,
|
||||
measure = NULL, rel_to_first = FALSE, n_clusters = c(1:10), ...)
|
||||
|
||||
xgb.plot.importance(importance_matrix = NULL, top_n = NULL,
|
||||
measure = NULL, rel_to_first = FALSE, left_margin = 10,
|
||||
cex = NULL, plot = TRUE, ...)
|
||||
measure = NULL, rel_to_first = FALSE, left_margin = 10, cex = NULL,
|
||||
plot = TRUE, ...)
|
||||
}
|
||||
\arguments{
|
||||
\item{importance_matrix}{a \code{data.table} returned by \code{\link{xgb.importance}}.}
|
||||
|
||||
@ -6,8 +6,8 @@
|
||||
\usage{
|
||||
xgb.plot.shap(data, shap_contrib = NULL, features = NULL, top_n = 1,
|
||||
model = NULL, trees = NULL, target_class = NULL,
|
||||
approxcontrib = FALSE, subsample = NULL, n_col = 1, col = rgb(0,
|
||||
0, 1, 0.2), pch = ".", discrete_n_uniq = 5, discrete_jitter = 0.01,
|
||||
approxcontrib = FALSE, subsample = NULL, n_col = 1, col = rgb(0, 0, 1,
|
||||
0.2), pch = ".", discrete_n_uniq = 5, discrete_jitter = 0.01,
|
||||
ylab = "SHAP", plot_NA = TRUE, col_NA = rgb(0.7, 0, 1, 0.6),
|
||||
pch_NA = ".", pos_NA = 1.07, plot_loess = TRUE, col_loess = 2,
|
||||
span_loess = 0.5, which = c("1d", "2d"), plot = TRUE, ...)
|
||||
|
||||
@ -33,6 +33,7 @@ bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
|
||||
eta = 1, nthread = 2, nrounds = 2,objective = "binary:logistic")
|
||||
xgb.save(bst, 'xgb.model')
|
||||
bst <- xgb.load('xgb.model')
|
||||
if (file.exists('xgb.model')) file.remove('xgb.model')
|
||||
pred <- predict(bst, test$data)
|
||||
}
|
||||
\seealso{
|
||||
|
||||
@ -5,17 +5,15 @@
|
||||
\alias{xgboost}
|
||||
\title{eXtreme Gradient Boosting Training}
|
||||
\usage{
|
||||
xgb.train(params = list(), data, nrounds, watchlist = list(),
|
||||
obj = NULL, feval = NULL, verbose = 1, print_every_n = 1L,
|
||||
xgb.train(params = list(), data, nrounds, watchlist = list(), obj = NULL,
|
||||
feval = NULL, verbose = 1, print_every_n = 1L,
|
||||
early_stopping_rounds = NULL, maximize = NULL, save_period = NULL,
|
||||
save_name = "xgboost.model", xgb_model = NULL, callbacks = list(),
|
||||
...)
|
||||
save_name = "xgboost.model", xgb_model = NULL, callbacks = list(), ...)
|
||||
|
||||
xgboost(data = NULL, label = NULL, missing = NA, weight = NULL,
|
||||
params = list(), nrounds, verbose = 1, print_every_n = 1L,
|
||||
early_stopping_rounds = NULL, maximize = NULL, save_period = NULL,
|
||||
save_name = "xgboost.model", xgb_model = NULL, callbacks = list(),
|
||||
...)
|
||||
save_name = "xgboost.model", xgb_model = NULL, callbacks = list(), ...)
|
||||
}
|
||||
\arguments{
|
||||
\item{params}{the list of parameters.
|
||||
|
||||
@ -236,7 +236,7 @@ test_that("early stopping using a specific metric works", {
|
||||
expect_equal(length(pred), 1611)
|
||||
logloss_pred <- sum(-ltest * log(pred) - (1 - ltest) * log(1 - pred)) / length(ltest)
|
||||
logloss_log <- bst$evaluation_log[bst$best_iteration, test_logloss]
|
||||
expect_equal(logloss_log, logloss_pred, tolerance = 5e-6)
|
||||
expect_equal(logloss_log, logloss_pred, tolerance = 1e-5)
|
||||
})
|
||||
|
||||
test_that("early stopping xgb.cv works", {
|
||||
|
||||
@ -163,6 +163,7 @@ test_that("xgb-attribute functionality", {
|
||||
# serializing:
|
||||
xgb.save(bst.Tree, 'xgb.model')
|
||||
bst <- xgb.load('xgb.model')
|
||||
if (file.exists('xgb.model')) file.remove('xgb.model')
|
||||
expect_equal(xgb.attr(bst, "my_attr"), val)
|
||||
expect_equal(xgb.attributes(bst), list.ch)
|
||||
# deletion:
|
||||
@ -199,10 +200,12 @@ if (grepl('Windows', Sys.info()[['sysname']]) ||
|
||||
test_that("xgb.Booster serializing as R object works", {
|
||||
saveRDS(bst.Tree, 'xgb.model.rds')
|
||||
bst <- readRDS('xgb.model.rds')
|
||||
if (file.exists('xgb.model.rds')) file.remove('xgb.model.rds')
|
||||
dtrain <- xgb.DMatrix(sparse_matrix, label = label)
|
||||
expect_equal(predict(bst.Tree, dtrain), predict(bst, dtrain), tolerance = float_tolerance)
|
||||
expect_equal(xgb.dump(bst.Tree), xgb.dump(bst))
|
||||
xgb.save(bst, 'xgb.model')
|
||||
if (file.exists('xgb.model')) file.remove('xgb.model')
|
||||
nil_ptr <- new("externalptr")
|
||||
class(nil_ptr) <- "xgb.Booster.handle"
|
||||
expect_true(identical(bst$handle, nil_ptr))
|
||||
|
||||
@ -70,7 +70,7 @@ First let's dump the model to JSON:
|
||||
|
||||
```{r}
|
||||
bst_json <- xgb.dump(bst, with_stats = FALSE, dump_format='json')
|
||||
bst_from_json <- jsonlite::fromJSON(bst_json, simplifyDataFrame = FALSE)
|
||||
bst_from_json <- fromJSON(bst_json, simplifyDataFrame = FALSE)
|
||||
node <- bst_from_json[[1]]
|
||||
cat(bst_json)
|
||||
```
|
||||
@ -186,4 +186,4 @@ bst_from_json_preds <- ifelse(fl(data$dates)<fl(node$split_condition),
|
||||
bst_preds == bst_from_json_preds
|
||||
```
|
||||
|
||||
All equal. What's the lesson? We have to ensure that all calculations are done with 32-bit floating point operators if we want to reproduce the results that we see with xgboost.
|
||||
All equal. What's the lesson? We have to ensure that all calculations are done with 32-bit floating point operators if we want to reproduce the results that we see with xgboost.
|
||||
|
||||
@ -106,6 +106,7 @@ test_script:
|
||||
# mingw R package: run the R check (which includes unit tests), and also keep the built binary package
|
||||
- if /i "%target%" == "rmingw" (
|
||||
set _R_CHECK_CRAN_INCOMING_=FALSE&&
|
||||
set _R_CHECK_FORCE_SUGGESTS_=FALSE&&
|
||||
R.exe CMD check xgboost*.tar.gz --no-manual --no-build-vignettes --as-cran --install-args=--build
|
||||
)
|
||||
# MSVC R package: run only the unit tests
|
||||
|
||||
@ -1 +1 @@
|
||||
Subproject commit 3943914eed66470bd010df581e29e4dca4f7df6f
|
||||
Subproject commit b46747af11336e8a138322139a45ee1dfe64e754
|
||||
Loading…
x
Reference in New Issue
Block a user