Federated learning plugin for xgboost:
* A gRPC server to aggregate MPI-style requests (allgather, allreduce, broadcast) from federated workers.
* A Rabit engine for the federated environment.
* Integration test to simulate federated learning.
Additional followups are needed to address GPU support, better security, and privacy, etc.
This makes GPU Hist robust in distributed environment as some workers might not
be associated with any data in either training or evaluation.
* Disable rabit mock test for now: See #5012 .
* Disable dask-cudf test at prediction for now: See #5003
* Launch dask job for all workers despite they might not have any data.
* Check 0 rows in elementwise evaluation metrics.
Using AUC and AUC-PR still throws an error. See #4663 for a robust fix.
* Add tests for edge cases.
* Add `LaunchKernel` wrapper handling zero sized grid.
* Move some parts of allreducer into a cu file.
* Don't validate feature names when the booster is empty.
* Sync number of columns in DMatrix.
As num_feature is required to be the same across all workers in data split
mode.
* Filtering in dask interface now by default syncs all booster that's not
empty, instead of using rank 0.
* Fix Jenkins' GPU tests.
* Install dask-cuda from source in Jenkins' test.
Now all tests are actually running.
* Restore GPU Hist tree synchronization test.
* Check UUID of running devices.
The check is only performed on CUDA version >= 10.x, as 9.x doesn't have UUID field.
* Fix CMake policy and project variables.
Use xgboost_SOURCE_DIR uniformly, add policy for CMake >= 3.13.
* Fix copying data to CPU
* Fix race condition in cpu predictor.
* Fix duplicated DMatrix construction.
* Don't download extra nccl in CI script.
* Combine thread launches into single launch per tree for gpu_hist
algorithm.
* Address deprecation warning
* Add manual column sampler constructor
* Turn off omp dynamic to get a guaranteed number of threads
* Enable openmp in cuda code
* All Linux tests are now in Jenkins CI
* Tests are now de-coupled from builds. We can now build XGBoost with one version of CUDA/JDK and test it with another version of CUDA/JDK
* Builds (compilation) are significantly faster because 1) They use C5 instances with faster CPU cores; and 2) build environment setup is cached using Docker containers
* Improved multi-node multi-GPU random forests.
- removed rabit::Broadcast() from each invocation of column sampling
- instead, syncing the PRNG seed when a ColumnSampler() object is constructed
- this makes non-trivial column sampling significantly faster in the distributed case
- refactored distributed GPU tests
- added distributed random forests tests
* Fix#3402: wrong fid crashes distributed algorithm
The bug was introduced by the recent DMatrix refactor (#3301). It was partially
fixed by #3408 but the example in #3402 was still failing. The example in #3402
will succeed after this fix is applied.
* Explicitly specify "this" to prevent compile error
* Add regression test
* Add distributed test to Travis matrix
* Install kubernetes Python package as dependency of dmlc tracker
* Add Python dependencies
* Add compile step
* Reduce size of regression test case
* Further reduce size of test