* Unify logging facilities.
* Enhance `ConsoleLogger` to handle different verbosity.
* Override macros from `dmlc`.
* Don't use specialized gamma when building with GPU.
* Remove verbosity cache in monitor.
* Test monitor.
* Deprecate `silent`.
* Fix doc and messages.
* Fix python test.
* Fix silent tests.
- Improved GPU performance logging
- Only use one execute shards function
- Revert performance regression on multi-GPU
- Use threads to launch NCCL AllReduce
* Split building histogram into separated class.
* Extract `InitCompressedRow` definition.
* Basic tests for gpu-hist.
* Document the code more verbosely.
* Removed `HistCutUnit`.
* Removed some duplicated copies in `GPUHistMaker`.
* Implement LCG and use it in tests.
* Implement Transform class.
* Add tests for softmax.
* Use Transform in regression, softmax and hinge objectives, except for Cox.
* Mark old gpu objective functions deprecated.
* static_assert for softmax.
* Split up multi-gpu tests.
* Expand histogram memory dynamically to prevent large allocations for large tree depths (e.g. > 15)
* Remove GPU memory allocation messages. These are misleading as a large number of allocations are now dynamic.
* Fix appveyor R test
* Added finding quantiles on GPU.
- this includes datasets where weights are assigned to data rows
- as the quantiles found by the new algorithm are not the same
as those found by the old one, test thresholds in
tests/python-gpu/test_gpu_updaters.py have been adjusted.
* Adjustments and improved testing for finding quantiles on the GPU.
- added C++ tests for the DeviceSketch() function
- reduced one of the thresholds in test_gpu_updaters.py
- adjusted the cuts found by the find_cuts_k kernel
* Upgrading to NCCL2
* Part - II of NCCL2 upgradation
- Doc updates to build with nccl2
- Dockerfile.gpu update for a correct CI build with nccl2
- Updated FindNccl package to have env-var NCCL_ROOT to take precedence
* Upgrading to v9.2 for CI workflow, since it has the nccl2 binaries available
* Added NCCL2 license + copy the nccl binaries into /usr location for the FindNccl module to find
* Set LD_LIBRARY_PATH variable to pick nccl2 binary at runtime
* Need the nccl2 library download instructions inside Dockerfile.release as well
* Use NCCL2 as a static library
* GPU binning and compression.
- binning and index compression are done inside the DeviceShard constructor
- in case of a DMatrix with multiple row batches, it is first converted into a single row batch
* Multi-GPU HostDeviceVector.
- HostDeviceVector instances can now span multiple devices, defined by GPUSet struct
- the interface of HostDeviceVector has been modified accordingly
- GPU objective functions are now multi-GPU
- GPU predicting from cache is now multi-GPU
- avoiding omp_set_num_threads() calls
- other minor changes
- thrust::copy() called from dvec::copy() for gpairs invoked a GPU kernel instead of
cudaMemcpy()
- this resulted in illegal memory access if the GPU running the kernel could not access
the data being copied
- new version of dvec::copy() for thrust::device_ptr iterators calls cudaMemcpy(),
avoiding the problem.
* Added GPU objective function and no-copy interface.
- xgboost::HostDeviceVector<T> syncs automatically between host and device
- no-copy interfaces have been added
- default implementations just sync the data to host
and call the implementations with std::vector
- GPU objective function, predictor, histogram updater process data
directly on GPU
- Implement colsampling, subsampling for gpu_hist_experimental
- Optimised multi-GPU implementation for gpu_hist_experimental
- Make nccl optional
- Add Volta architecture flag
- Optimise RegLossObj
- Add timing utilities for debug verbose mode
- Bump required cuda version to 8.0
* Fatal error if GPU algorithm selected without GPU support compiled
* Resolve type conversion warnings
* Fix gpu unit test failure
* Fix compressed iterator edge case
* Fix python unit test failures due to flake8 update on pip