* Bugfix 1: Fix segfault in multithreaded ApplySplitSparseData()
When there are more threads than rows in rowset, some threads end up
with empty ranges, causing them to crash. (iend - 1 needs to be
accessible as part of algorithm)
Fix: run only those threads with nonempty ranges.
* Add regression test for Bugfix 1
* Moving python_omp_test to existing python test group
Turns out you don't need to set "OMP_NUM_THREADS" to enable
multithreading. Just add nthread parameter.
* Bugfix 2: Fix corner case of ApplySplitSparseData() for categorical feature
When split value is less than all cut points, split_cond is set
incorrectly.
Fix: set split_cond = -1 to indicate this scenario
* Bugfix 3: Initialize data layout indicator before using it
data_layout_ is accessed before being set; this variable determines
whether feature 0 is included in feat_set.
Fix: re-order code in InitData() to initialize data_layout_ first
* Adding regression test for Bugfix 2
Unfortunately, no regression test for Bugfix 3, as there is no
way to deterministically assign value to an uninitialized variable.
* Add UpdatePredictionCache() option to updaters
Some updaters (e.g. fast_hist) has enough information to quickly compute
prediction cache for the training data. Each updater may override
UpdaterPredictionCache() method to update the prediction cache. Note: this
trick does not apply to validation data.
* Respond to code review
* Disable some debug messages by default
* Document UpdatePredictionCache() interface
* Remove base_margin logic from UpdatePredictionCache() implementation
* Do not take pointer to cfg, as reference may get stale
* Improve multi-threaded performance
* Use columnwise accessor to accelerate ApplySplit() step,
with support for a compressed representation
* Parallel sort for evaluation step
* Inline BuildHist() function
* Cache gradient pairs when building histograms in BuildHist()
* Add missing #if macro
* Respond to code review
* Use wrapper to enable parallel sort on Linux
* Fix C++ compatibility issues
* MSVC doesn't support unsigned in OpenMP loops
* gcc 4.6 doesn't support using keyword
* Fix lint issues
* Respond to code review
* Fix bug in ApplySplitSparseData()
* Attempting to read beyond the end of a sparse column
* Mishandling the case where an entire range of rows have missing values
* Fix training continuation bug
Disable UpdatePredictionCache() in the first iteration. This way, we can
accomodate the scenario where we build off of an existing (nonempty) ensemble.
* Add regression test for fast_hist
* Respond to code review
* Add back old version of ApplySplitSparseData
As discussed in issue #1978, tree_method=hist ignores the parameter
param.num_roots; it simply assumes that the tree has only one root. In
particular, when InitData() method initializes row_set_collection_, it simply
assigns all rows to node 0, the value that's hard-coded.
For now, the updater will simply fail when num_roots exceeds 1. I will revise
the updater soon to support multiple roots.
* Support histogram-based algorithm + multiple tree growing strategy
* Add a brand new updater to support histogram-based algorithm, which buckets
continuous features into discrete bins to speed up training. To use it, set
`tree_method = fast_hist` to configuration.
* Support multiple tree growing strategies. For now, two policies are supported:
* `grow_policy=depthwise` (default): favor splitting at nodes closest to the
root, i.e. grow depth-wise.
* `grow_policy=lossguide`: favor splitting at nodes with highest loss change
* Improve single-threaded performance
* Unroll critical loops
* Introduce specialized code for dense data (i.e. no missing values)
* Additional training parameters: `max_leaves`, `max_bin`, `grow_policy`, `verbose`
* Adding a small test for hist method
* Fix memory error in row_set.h
When std::vector is resized, a reference to one of its element may become
stale. Any such reference must be updated as well.
* Resolve cross-platform compilation issues
* Versions of g++ older than 4.8 lacks support for a few C++11 features, e.g.
alignas(*) and new initializer syntax. To support g++ 4.6, use pre-C++11
initializer and remove alignas(*).
* Versions of MSVC older than 2015 does not support alignas(*). To support
MSVC 2012, remove alignas(*).
* For g++ 4.8 and newer, alignas(*) is enabled for performance benefits.
* Some old compilers (MSVC 2012, g++ 4.6) do not support template aliases
(which uses `using` to declate type aliases). So always use `typedef`.
* Fix a host of CI issues
* Remove dependency for libz on osx
* Fix heading for hist_util
* Fix minor style issues
* Add missing #include
* Remove extraneous logging
* Enable tree_method=hist in R
* Renaming HistMaker to GHistBuilder to avoid confusion
* Fix R integration
* Respond to style comments
* Consistent tie-breaking for priority queue using timestamps
* Last-minute style fixes
* Fix issuecomment-271977647
The way we quantize data is broken. The agaricus data consists of all
categorical values. When NAs are converted into 0's,
`HistCutMatrix::Init` assign both 0's and 1's to the same single bin.
Why? gmat only the smallest value (0) and an upper bound (2), which is twice
the maximum value (1). Add the maximum value itself to gmat to fix the issue.
* Fix issuecomment-272266358
* Remove padding from cut values for the continuous case
* For categorical/ordinal values, use midpoints as bin boundaries to be safe
* Fix CI issue -- do not use xrange(*)
* Fix corner case in quantile sketch
Signed-off-by: Philip Cho <chohyu01@cs.washington.edu>
* Adding a test for an edge case in quantile sketcher
max_bin=2 used to cause an exception.
* Fix fast_hist test
The test used to require a strictly increasing Test AUC for all examples.
One of them exhibits a small blip in Test AUC before achieving a Test AUC
of 1. (See bottom.)
Solution: do not require monotonic increase for this particular example.
[0] train-auc:0.99989 test-auc:0.999497
[1] train-auc:1 test-auc:0.999749
[2] train-auc:1 test-auc:0.999749
[3] train-auc:1 test-auc:0.999749
[4] train-auc:1 test-auc:0.999749
[5] train-auc:1 test-auc:0.999497
[6] train-auc:1 test-auc:1
[7] train-auc:1 test-auc:1
[8] train-auc:1 test-auc:1
[9] train-auc:1 test-auc:1
The GetWeight is a wrapper which sets the correct weight
if the weights vector is not provided. Hence accessing the default
weights vector is not recommended.
* [CORE] allow updating trees in an existing model
* [CORE] in refresh updater, allow keeping old leaf values and update stats only
* [R-package] xgb.train mod to allow updating trees in an existing model
* [R-package] added check for nrounds when is_update
* [CORE] merge parameter declaration changes; unify their code style
* [CORE] move the update-process trees initialization to Configure; rename default process_type to 'default'; fix the trees and trees_to_update sizes comparison check
* [R-package] unit tests for the update process type
* [DOC] documentation for process_type parameter; improved docs for updater, Gamma and Tweedie; added some parameter aliases; metrics indentation and some were non-documented
* fix my sloppy merge conflict resolutions
* [CORE] add a TreeProcessType enum
* whitespace fix
* Fix various typos
* Add override to functions that are overridden
gcc gives warnings about functions that are being overridden by not
being marked as oveirridden. This fixes it.
* Use bst_float consistently
Use bst_float for all the variables that involve weight,
leaf value, gradient, hessian, gain, loss_chg, predictions,
base_margin, feature values.
In some cases, when due to additions and so on the value can
take a larger value, double is used.
This ensures that type conversions are minimal and reduces loss of
precision.
In ecb3a271bed151252fb048528ce5a90ad75bb68f the silent argument
in XGDMatrixCreateFromFile of c_api.cc was always overridden to
be false. This disabled the functionality to hide log messages.
This commit reverts that part to enable the hiding of log messages.
On Unix systems, it's common for programs to read their input from stdin, and
write their output to stdout. Messages should be written to stderr, where they
won't corrupt a program's output, and where they can be seen by the user even
if the output is being redirected.
This is mostly a problem when XGBoost is being used from Python or from another
program.
* add support for tweedie regression
* added back readme line that was accidentally deleted
* fixed linting errors
* add support for tweedie regression
* added back readme line that was accidentally deleted
* fixed linting errors
* rebased with upstream master and added R example
* changed parameter name to tweedie_variance_power
* linting error fix
* refactored tweedie-nloglik metric to be more like the other parameterized metrics
* added upper and lower bound check to tweedie metric
* add support for tweedie regression
* added back readme line that was accidentally deleted
* fixed linting errors
* added upper and lower bound check to tweedie metric
* added back readme line that was accidentally deleted
* rebased with upstream master and added R example
* rebased again on top of upstream master
* linting error fix
* added upper and lower bound check to tweedie metric
* rebased with master
* lint fix
* removed whitespace at end of line 186 - elementwise_metric.cc
* Add format to the params accepted by DumpModel
Currently, only the test format is supported when trying to dump
a model. The plan is to add more such formats like JSON which are
easy to read and/or parse by machines. And to make the interface
for this even more generic to allow other formats to be added.
Hence, we make some modifications to make these function generic
and accept a new parameter "format" which signifies the format of
the dump to be created.
* Fix typos and errors in docs
* plugin: Mention all the register macros available
Document the register macros currently available to the plugin
writers so they know what exactly can be extended using hooks.
* sparce_page_source: Use same arg name in .h and .cc
* gbm: Add JSON dump
The dump_format argument can be used to specify what type
of dump file should be created. Add functionality to dump
gblinear and gbtree into a JSON file.
The JSON file has an array, each item is a JSON object for the tree.
For gblinear:
- The item is the bias and weights vectors
For gbtree:
- The item is the root node. The root node has a attribute "children"
which holds the children nodes. This happens recursively.
* core.py: Add arg dump_format for get_dump()
* correct CalcDCG in rank_metric.cc
DCG use log base-2, however `std::log` returns log base-e.
* correct CalcDCG in rank_obj.cc
DCG use log base-2, however `std::log` returns log base-e.
* use std::log2 instead of std::log
make it more elegant
* use std::log2 instead of std::log
make it more elegant
* [TREE] Experimental version of monotone constraint
* Allow default detection of montone option
* loose the condition of strict check
* Update gbtree.cc
* Add deviance metric for gamma regression
* Simplify the computation of nloglik for gamma regression
* Add a description for gamma-deviance
* Minor fix
* Add support for Gamma regression
* Use base_score to replace the lp_bias
* Remove the lp_bias config block
* Add a demo for running gamma regression in Python
* Typo fix
* Revise the description for objective
* Add a script to generate the autoclaims dataset