* Extract interaction constraints from split evaluator.
The reason for doing so is mostly for model IO, where num_feature and interaction_constraints are copied in split evaluator. Also interaction constraint by itself is a feature selector, acting like column sampler and it's inefficient to bury it deep in the evaluator chain. Lastly removing one another copied parameter is a win.
* Enable inc for approx tree method.
As now the implementation is spited up from evaluator class, it's also enabled for approx method.
* Removing obsoleted code in colmaker.
They are never documented nor actually used in real world. Also there isn't a single test for those code blocks.
* Unifying the types used for row and column.
As the size of input dataset is marching to billion, incorrect use of int is subject to overflow, also singed integer overflow is undefined behaviour. This PR starts the procedure for unifying used index type to unsigned integers. There's optimization that can utilize this undefined behaviour, but after some testings I don't see the optimization is beneficial to XGBoost.
* Use `UpdateAllowUnknown' for non-model related parameter.
Model parameter can not pack an additional boolean value due to binary IO
format. This commit deals only with non-model related parameter configuration.
* Add tidy command line arg for use-dmlc-gtest.
* Apply Configurable to objective functions.
* Apply Model to Learner and Regtree, gbm.
* Add Load/SaveConfig to objs.
* Refactor obj tests to use smart pointer.
* Dummy methods for Save/Load Model.
* Move get transpose into cc.
* Clean up headers in host device vector, remove thrust dependency.
* Move span and host device vector into public.
* Install c++ headers.
* Short notes for c and c++.
Co-Authored-By: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
* Initial support for cudf integration.
* Add two C APIs for consuming data and metainfo.
* Add CopyFrom for SimpleCSRSource as a generic function to consume the data.
* Add FromDeviceColumnar for consuming device data.
* Add new MetaInfo::SetInfo for consuming label, weight etc.
* Refactor configuration [Part II].
* General changes:
** Remove `Init` methods to avoid ambiguity.
** Remove `Configure(std::map<>)` to avoid redundant copying and prepare for
parameter validation. (`std::vector` is returned from `InitAllowUnknown`).
** Add name to tree updaters for easier debugging.
* Learner changes:
** Make `LearnerImpl` the only source of configuration.
All configurations are stored and carried out by `LearnerImpl::Configure()`.
** Remove booster in C API.
Originally kept for "compatibility reason", but did not state why. So here
we just remove it.
** Add a `metric_names_` field in `LearnerImpl`.
** Remove `LazyInit`. Configuration will always be lazy.
** Run `Configure` before every iteration.
* Predictor changes:
** Allocate both cpu and gpu predictor.
** Remove cpu_predictor from gpu_predictor.
`GBTree` is now used to dispatch the predictor.
** Remove some GPU Predictor tests.
* IO
No IO changes. The binary model format stability is tested by comparing
hashing value of save models between two commits
* Initial performance optimizations for xgboost
* remove includes
* revert float->double
* fix for CI
* fix for CI
* fix for CI
* fix for CI
* fix for CI
* fix for CI
* fix for CI
* fix for CI
* fix for CI
* fix for CI
* Check existence of _mm_prefetch and __builtin_prefetch
* Fix lint
* optimizations for CPU
* appling comments in review
* add some comments, code refactoring
* fixing issues in CI
* adding runtime checks
* remove 1 extra check
* remove extra checks in BuildHist
* remove checks
* add debug info
* added debug info
* revert changes
* added comments
* Apply suggestions from code review
Co-Authored-By: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
* apply review comments
* Remove unused function CreateNewNodes()
* Add descriptive comment on node_idx variable in QuantileHistMaker::Builder::BuildHistsBatch()
* Implement tree model dump with a code generator.
* Split up generators.
* Implement graphviz generator.
* Use pattern matching.
* [Breaking] Return a Source in `to_graphviz` instead of Digraph in Python package.
Co-Authored-By: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
* - do not create device vectors for the entire sparse page while computing histograms...
- while creating the compressed histogram indices, the row vector is created for the entire
sparse page batch. this is needless as we only process chunks at a time based on a slice
of the total gpu memory
- this pr will allocate only as much as required to store the ppropriate row indices and the entries
* - do not dereference row_ptrs once the device_vector has been created to elide host copies of those counts
- instead, grab the entry counts directly from the sparsepage
* - training with external memory - part 2 of 2
- when external memory support is enabled, building of histogram indices are
done incrementally for every sparse page
- the entire set of input data is divided across multiple gpu's and the relative
row positions within each device is tracked when building the compressed histogram buffer
- this was tested using a mortgage dataset containing ~ 670m rows before 4xt4's could be
saturated
* Only define `gpu_id` and `n_gpus` in `LearnerTrainParam`
* Pass LearnerTrainParam through XGBoost vid factory method.
* Disable all GPU usage when GPU related parameters are not specified (fixes XGBoost choosing GPU over aggressively).
* Test learner train param io.
* Fix gpu pickling.
* Combine thread launches into single launch per tree for gpu_hist
algorithm.
* Address deprecation warning
* Add manual column sampler constructor
* Turn off omp dynamic to get a guaranteed number of threads
* Enable openmp in cuda code
* Fix Histogram allocation.
nidx_map is cleared after `Reset`, but histogram data size isn't changed hence
histogram recycling is used in later iterations. After a reset(building new
tree), newly allocated node will start from 0, while recycling always choose
the node with smallest index, which happens to be our newly allocated node 0.
* Optimisations for gpu_hist.
* Use streams to overlap operations.
* ColumnSampler now uses HostDeviceVector to prevent repeatedly copying feature vectors to the device.
* Upgrade gtest for clang-tidy.
* Use CMake to install GTest instead of mv.
* Don't enforce clang-tidy to return 0 due to errors in thrust.
* Add a small test for tidy itself.
* Reformat.
* Prevent empty quantiles
* Revise and improve unit tests for quantile hist
* Remove unnecessary comment
* Add #2943 as a test case
* Skip test if no sklearn
* Revise misleading comments