This PR introduces a new parameter `extmem_concat_pages` to make the page concatenation optional for GPU hist. In addition, the document is updated for the new GPU-based external memory.
This helps reduce the memory copying needed for dense data. In addition, it helps reduce memory usage even if external memory is not used.
- Decouple the number of symbols needed in the compressor with the number of features when the data is dense.
- Remove the fetch call in the `at_end_` iteration.
- Reduce synchronization and kernel launches by using the `uvector` and ctx.
- Remove the calculation of n_symbols in the accessor.
- Pack initialization steps into the parameter list.
- Pass the context into various ctors.
- Specialization for dense data to prepare for further compression.
- Expose the maximum number of cached nodes to be consistent with the CPU implementation. Also easier for testing.
- Extract the subtraction trick for easier testing.
- Split up the `GradientQuantiser` to avoid circular dependency.
- Expose `NumBatches` in `DMatrix`.
- Small cleanup for removing legacy CUDA stream and ~force CUDA context initialization~.
- Purge old external memory data generation code.
- Use `UpdatePosition` for all nodes and skip `FinalizePosition` when external memory is used.
- Create `encode/decode` for node position, this is just as a refactor.
- Reuse code between update position and finalization.
* Cleanup GPU Hist tests.
- Remove GPU Hist gradient sampling test. The same properties are tested in the gradient
sampler test suite.
- Move basic histogram tests into the histogram test suite.
- Remove the header inclusion of the `updater_gpu_hist.cu` in tests.
- Support resource view in ellpack.
- Define the CUDA version of MMAP resource.
- Define the CUDA version of malloc resource.
- Refactor cuda runtime API wrappers, and add memory access related wrappers.
- gather windows macros into a single header.
This PR replaces the original RABIT implementation with a new one, which has already been partially merged into XGBoost. The new one features:
- Federated learning for both CPU and GPU.
- NCCL.
- More data types.
- A unified interface for all the underlying implementations.
- Improved timeout handling for both tracker and workers.
- Exhausted tests with metrics (fixed a couple of bugs along the way).
- A reusable tracker for Python and JVM packages.
- Use the array interface internally.
- Deprecate `XGDMatrixSetDenseInfo`.
- Deprecate `XGDMatrixSetUIntInfo`.
- Move the handling of `DataType` into the deprecated C function.
---------
Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
- Use std::uint64_t instead of size_t to avoid implementation-defined type.
- Rename to bst_idx_t, to account for other types of indexing.
- Small cleanup to the base header.
* [coll] Pass context to various functions.
In the future, the `Context` object would be required for collective operations, this PR
passes the context object to some required functions to prepare for swapping out the
implementation.
- Update SparseDMatrix comment.
- Use a pointer in the bitfield. We will replace the `std::vector<bool>` in `ColumnMatrix` with bitfield.
- Clean up the page source. The timer is removed as it's inaccurate once we swap the mmap pointer into the page.
- Pass context from booster to DMatrix.
- Use context instead of integer for `n_threads`.
- Check the consistency configuration for `max_bin`.
- Test for all combinations of initialization options.
* Prepare for improving Windows networking compatibility.
* Include dmlc filesystem indirectly as dmlc/filesystem.h includes windows.h, which
conflicts with winsock2.h
* Define `NOMINMAX` conditionally.
* Link the winsock library when mysys32 is used.
* Add config file for read the doc.
Support adaptive tree, a feature supported by both sklearn and lightgbm. The tree leaf is recomputed based on residue of labels and predictions after construction.
For l1 error, the optimal value is the median (50 percentile).
This is marked as experimental support for the following reasons:
- The value is not well defined for distributed training, where we might have empty leaves for local workers. Right now I just use the original leaf value for computing the average with other workers, which might cause significant errors.
- Some follow-ups are required, for exact, pruner, and optimization for quantile function. Also, we need to calculate the initial estimation.