7 Commits

Author SHA1 Message Date
amdsc21
3a07b1edf8 complete test porting 2023-03-11 02:17:05 +01:00
Jiaming Yuan
cce4af4acf
Initial support for quantile loss. (#8750)
- Add support for Python.
- Add objective.
2023-02-16 02:30:18 +08:00
Jiaming Yuan
cfa994d57f
Multi-target support for L1 error. (#8652)
- Add matrix support to the median function.
- Iterate through each target for quantile computation.
2023-01-11 05:51:14 +08:00
Jiaming Yuan
8d545ab2a2
Implement fit stump. (#8607) 2023-01-04 04:14:51 +08:00
Jiaming Yuan
3e26107a9c
Rename and extract Context. (#8528)
* Rename `GenericParameter` to `Context`.
* Rename header file to reflect the change.
* Rename all references.
2022-12-07 04:58:54 +08:00
Jiaming Yuan
fffb1fca52
Calculate base_score based on input labels for mae. (#8107)
Fit an intercept as base score for abs loss.
2022-09-20 20:53:54 +08:00
Jiaming Yuan
fdf533f2b9
[POC] Experimental support for l1 error. (#7812)
Support adaptive tree, a feature supported by both sklearn and lightgbm.  The tree leaf is recomputed based on residue of labels and predictions after construction.

For l1 error, the optimal value is the median (50 percentile).

This is marked as experimental support for the following reasons:
- The value is not well defined for distributed training, where we might have empty leaves for local workers. Right now I just use the original leaf value for computing the average with other workers, which might cause significant errors.
- Some follow-ups are required, for exact, pruner, and optimization for quantile function. Also, we need to calculate the initial estimation.
2022-04-26 21:41:55 +08:00