* Cleanup code for distributed training.
- Merge `GetNcclResult` into nccl stub.
- Split up utilities from the main dask module.
- Let Channel return `Result` to accommodate nccl channel.
- Remove old `use_label_encoder` parameter.
* Define `best_iteration` only if early stopping is used.
This is the behavior specified by the document but not honored in the actual code.
- Don't set the attributes if there's no early stopping.
- Clean up the code for callbacks, and replace assertions with proper exceptions.
- Assign the attributes when early stopping `save_best` is used.
- Turn the attributes into Python properties.
---------
Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
- Rewrite GPU demos. notebook is converted to script to avoid committing additional png plots.
- Add GPU demos into the sphinx gallery.
- Add RMM demos into the sphinx gallery.
- Test for firing threads with different device ordinals.
* Handle the new `device` parameter in dask and demos.
- Check no ordinal is specified in the dask interface.
- Update demos.
- Update dask doc.
- Update the condition for QDM.
- A `DeviceOrd` struct is implemented to indicate the device. It will eventually replace the `gpu_id` parameter.
- The `predictor` parameter is removed.
- Fallback to `DMatrix` when `inplace_predict` is not available.
- The heuristic for choosing a predictor is only used during training.
- Remove parameter serialization in the scikit-learn interface.
The scikit-lear interface `save_model` will save only the model and discard all
hyper-parameters. This is to align with the native XGBoost interface, which distinguishes
the hyper-parameter and model parameters.
With the scikit-learn interface, model parameters are attributes of the estimator. For
instance, `n_features_in_`, `n_classes_` are always accessible with
`estimator.n_features_in_` and `estimator.n_classes_`, but not with the
`estimator.get_params`.
- Define a `load_model` method for classifier to load its own attributes.
- Set n_estimators to None by default.
* Implement multi-target for hist.
- Add new hist tree builder.
- Move data fetchers for tests.
- Dispatch function calls in gbm base on the tree type.
* Support sklearn cross validation for ranker.
- Add a convention for X to include a special `qid` column.
sklearn utilities consider only `X`, `y` and `sample_weight` for supervised learning
algorithms, but we need an additional qid array for ranking.
It's important to be able to support the cross validation function in sklearn since all
other tuning functions like grid search are based on cross validation.
* Use array interface for CSC matrix.
Use array interface for CSC matrix and align the interface with CSR and dense.
- Fix nthread issue in the R package DMatrix.
- Unify the behavior of handling `missing` with other inputs.
- Unify the behavior of handling `missing` around R, Python, Java, and Scala DMatrix.
- Expose `num_non_missing` to the JVM interface.
- Deprecate old CSR and CSC constructors.
- Use numpy stack for handling list of arrays.
- Reuse concat function from dask.
- Prepare for `QuantileDMatrix`.
- Remove unused code.
- Use iterator for prediction to avoid initializing xgboost model