* Support more input types for categorical data.
* Shorten the type name from "categorical" to "c".
* Tests for np/cp array and scipy csr/csc/coo.
* Specify the type for feature info.
* Add hessian to batch param in preparation of new approx impl.
* Extract a push method for gradient index matrix.
* Use span instead of vector ref for hessian in sketching.
* Create a binary format for gradient index.
On GPU we use rouding factor to truncate the gradient for deterministic results. This PR changes the gradient representation to fixed point number with exponent aligned with rounding factor.
[breaking] Drop non-deterministic histogram.
Use fixed point for shared memory.
This PR is to improve the performance of GPU Hist.
Co-authored-by: Andy Adinets <aadinets@nvidia.com>
* [CI] Automatically build GPU-enabled R package for Windows
* Update Jenkinsfile-win64
* Build R package for the release branch only
* Update install doc
Fix bug introduced in 17913713b554d820a8ce94226d854b4a5f1d8bbc (allow loading from byte array)
When loading model from stream, only last buffer read from the input stream is used to construct the model.
This may work for models smaller than 1 MiB (if you are lucky enough to read the whole model at once), but will always fail if the model is larger.
* Work around a segfault observed in SparsePage::Push()
* Revert "Work around a segfault observed in SparsePage::Push()"
This reverts commit 30934844d00908750a5442082eb4769b1489f6a9.
* Don't call vector::resize() inside OpenMP block
* Set GITHUB_PAT env var to fix R tests
* Use built-in GITHUB_TOKEN
* Disallow importing non-dask estimators from xgboost.dask
This is mostly a style change, but also avoids a user error (that I have
committed on a few occasions). Since `XGBRegressor` and `XGBClassifier`
are imported as parent classes for the `dask` estimators, without
defining an `__all__`, autocomplete (or muscle) memory will produce the
following with little prompting:
```
from xgboost.dask import XGBClassifier
```
There's nothing inherently wrong with that, but given that
`XGBClassifier` is not `dask` enabled, it can lead to confusing behavior
until you figure out you should've typed
```
from xgboost.dask import DaskXGBClassifier
```
Another option is to alias import the existing non-dask estimators.
* Remove base/iter class, add train predict funcs
* Use type aliases for discard iterators
* update to include host_vector as thrust 1.12 doesn't bring it in as a side-effect
* cub::DispatchRadixSort requires signed offset types