116 Commits

Author SHA1 Message Date
Jiaming Yuan
c90457f489
Refactor the CLI. (#5574)
* Enable parameter validation.
* Enable JSON.
* Catch `dmlc::Error`.
* Show help message.
2020-04-26 10:56:33 +08:00
Philip Hyunsu Cho
f68155de6c
Fix compilation on Mac OSX High Sierra (10.13) (#5597)
* Fix compilation on Mac OSX High Sierra

* [CI] Build Mac OSX binary wheel using Travis CI
2020-04-25 10:53:03 -07:00
Rory Mitchell
e268fb0093
Use thrust functions instead of custom functions (#5544) 2020-04-16 21:41:16 +12:00
Jiaming Yuan
0012f2ef93
Upgrade clang-tidy on CI. (#5469)
* Correct all clang-tidy errors.
* Upgrade clang-tidy to 10 on CI.

Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
2020-04-05 04:42:29 +08:00
Avinash Barnwal
dcf439932a
Add Accelerated Failure Time loss for survival analysis task (#4763)
* [WIP] Add lower and upper bounds on the label for survival analysis

* Update test MetaInfo.SaveLoadBinary to account for extra two fields

* Don't clear qids_ for version 2 of MetaInfo

* Add SetInfo() and GetInfo() method for lower and upper bounds

* changes to aft

* Add parameter class for AFT; use enum's to represent distribution and event type

* Add AFT metric

* changes to neg grad to grad

* changes to binomial loss

* changes to overflow

* changes to eps

* changes to code refactoring

* changes to code refactoring

* changes to code refactoring

* Re-factor survival analysis

* Remove aft namespace

* Move function bodies out of AFTNormal and AFTLogistic, to reduce clutter

* Move function bodies out of AFTLoss, to reduce clutter

* Use smart pointer to store AFTDistribution and AFTLoss

* Rename AFTNoiseDistribution enum to AFTDistributionType for clarity

The enum class was not a distribution itself but a distribution type

* Add AFTDistribution::Create() method for convenience

* changes to extreme distribution

* changes to extreme distribution

* changes to extreme

* changes to extreme distribution

* changes to left censored

* deleted cout

* changes to x,mu and sd and code refactoring

* changes to print

* changes to hessian formula in censored and uncensored

* changes to variable names and pow

* changes to Logistic Pdf

* changes to parameter

* Expose lower and upper bound labels to R package

* Use example weights; normalize log likelihood metric

* changes to CHECK

* changes to logistic hessian to standard formula

* changes to logistic formula

* Comply with coding style guideline

* Revert back Rabit submodule

* Revert dmlc-core submodule

* Comply with coding style guideline (clang-tidy)

* Fix an error in AFTLoss::Gradient()

* Add missing files to amalgamation

* Address @RAMitchell's comment: minimize future change in MetaInfo interface

* Fix lint

* Fix compilation error on 32-bit target, when size_t == bst_uint

* Allocate sufficient memory to hold extra label info

* Use OpenMP to speed up

* Fix compilation on Windows

* Address reviewer's feedback

* Add unit tests for probability distributions

* Make Metric subclass of Configurable

* Address reviewer's feedback: Configure() AFT metric

* Add a dummy test for AFT metric configuration

* Complete AFT configuration test; remove debugging print

* Rename AFT parameters

* Clarify test comment

* Add a dummy test for AFT loss for uncensored case

* Fix a bug in AFT loss for uncensored labels

* Complete unit test for AFT loss metric

* Simplify unit tests for AFT metric

* Add unit test to verify aggregate output from AFT metric

* Use EXPECT_* instead of ASSERT_*, so that we run all unit tests

* Use aft_loss_param when serializing AFTObj

This is to be consistent with AFT metric

* Add unit tests for AFT Objective

* Fix OpenMP bug; clarify semantics for shared variables used in OpenMP loops

* Add comments

* Remove AFT prefix from probability distribution; put probability distribution in separate source file

* Add comments

* Define kPI and kEulerMascheroni in probability_distribution.h

* Add probability_distribution.cc to amalgamation

* Remove unnecessary diff

* Address reviewer's feedback: define variables where they're used

* Eliminate all INFs and NANs from AFT loss and gradient

* Add demo

* Add tutorial

* Fix lint

* Use 'survival:aft' to be consistent with 'survival:cox'

* Move sample data to demo/data

* Add visual demo with 1D toy data

* Add Python tests

Co-authored-by: Philip Cho <chohyu01@cs.washington.edu>
2020-03-25 13:52:51 -07:00
sriramch
b81f8cbbc0
Move segment sorter to common (#5378)
- move segment sorter to common
- this is the first of a handful of pr's that splits the larger pr #5326
- it moves this facility to common (from ranking objective class), so that it can be
    used for metric computation
- it also wraps all the bald device pointers into span.
2020-02-29 15:42:07 +08:00
Jiaming Yuan
f2b8cd2922
Add number of columns to native data iterator. (#5202)
* Change native data iter into an adapter.
2020-02-25 23:42:01 +08:00
Jiaming Yuan
1891cc766d
Fix metainfo from DataFrame. (#5216)
* Fix metainfo from DataFrame.

* Unify helper functions for data and meta.
2020-01-22 16:29:44 +08:00
sriramch
ee81ba8e1f implementation of map ranking algorithm on gpu (#5129)
* - implementation of map ranking algorithm
  - also effected necessary suggestions mentioned in the earlier ranking pr's
  - made some performance improvements to the ndcg algo as well
2019-12-27 12:05:37 +13:00
Jiaming Yuan
c8bdb652c4
Add check for length of weights. (#4872) 2019-12-21 11:30:58 +08:00
sriramch
2abe69d774 - ndcg ltr implementation on gpu (#5004)
* - ndcg ltr implementation on gpu
  - this is a follow-up to the pairwise ltr implementation
2019-11-13 11:21:04 +13:00
Jiaming Yuan
7663de956c
Run training with empty DMatrix. (#4990)
This makes GPU Hist robust in distributed environment as some workers might not
be associated with any data in either training or evaluation.

* Disable rabit mock test for now: See #5012 .

* Disable dask-cudf test at prediction for now: See #5003

* Launch dask job for all workers despite they might not have any data.
* Check 0 rows in elementwise evaluation metrics.

   Using AUC and AUC-PR still throws an error.  See #4663 for a robust fix.

* Add tests for edge cases.
* Add `LaunchKernel` wrapper handling zero sized grid.
* Move some parts of allreducer into a cu file.
* Don't validate feature names when the booster is empty.

* Sync number of columns in DMatrix.

  As num_feature is required to be the same across all workers in data split
  mode.

* Filtering in dask interface now by default syncs all booster that's not
empty, instead of using rank 0.

* Fix Jenkins' GPU tests.

* Install dask-cuda from source in Jenkins' test.

  Now all tests are actually running.

* Restore GPU Hist tree synchronization test.

* Check UUID of running devices.

  The check is only performed on CUDA version >= 10.x, as 9.x doesn't have UUID field.

* Fix CMake policy and project variables.

  Use xgboost_SOURCE_DIR uniformly, add policy for CMake >= 3.13.

* Fix copying data to CPU

* Fix race condition in cpu predictor.

* Fix duplicated DMatrix construction.

* Don't download extra nccl in CI script.
2019-11-06 16:13:13 +08:00
Jiaming Yuan
6ec7e300bd
Fix external memory race in colmaker. (#4980)
* Move `GetColDensity` out of omp parallel block.
2019-10-25 04:11:13 -04:00
Jiaming Yuan
ac457c56a2
Use `UpdateAllowUnknown' for non-model related parameter. (#4961)
* Use `UpdateAllowUnknown' for non-model related parameter.

Model parameter can not pack an additional boolean value due to binary IO
format.  This commit deals only with non-model related parameter configuration.

* Add tidy command line arg for use-dmlc-gtest.
2019-10-23 05:50:12 -04:00
sriramch
310fe60b35 Pairwise ranking objective implementation on gpu (#4873)
* - pairwise ranking objective implementation on gpu
   - there are couple of more algorithms (ndcg and map) for which support will be added
     as follow-up pr's
   - with no label groups defined, get gradient is 90x faster on gpu (120m instance
     mortgage dataset)
   - it can perform by an order of magnitude faster with ~ 10 groups (and adequate cores
     for the cpu implementation)

* Add JSON config to rank obj.
2019-10-22 23:40:07 -04:00
Jiaming Yuan
ae536756ae
Add Model and Configurable interface. (#4945)
* Apply Configurable to objective functions.
* Apply Model to Learner and Regtree, gbm.
* Add Load/SaveConfig to objs.
* Refactor obj tests to use smart pointer.
* Dummy methods for Save/Load Model.
2019-10-18 01:56:02 -04:00
Jiaming Yuan
095de3bf5f
Export c++ headers in CMake installation. (#4897)
* Move get transpose into cc.

* Clean up headers in host device vector, remove thrust dependency.

* Move span and host device vector into public.

* Install c++ headers.

* Short notes for c and c++.

Co-Authored-By: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
2019-10-06 23:53:09 -04:00
Rong Ou
562bb0ae31 remove device shards (#4867) 2019-09-25 13:15:46 +08:00
Rong Ou
38ab79f889 Make HostDeviceVector single gpu only (#4773)
* Make HostDeviceVector single gpu only
2019-08-26 09:51:13 +12:00
Rong Ou
602484e19f Remove some unused functions as reported by cppcheck (#4743) 2019-08-07 02:42:33 -04:00
Jiaming Yuan
001aaaee5f
Removed deprecated gpu objectives. (#4690) 2019-07-20 23:18:34 -04:00
Jiaming Yuan
f0064c07ab
Refactor configuration [Part II]. (#4577)
* Refactor configuration [Part II].

* General changes:
** Remove `Init` methods to avoid ambiguity.
** Remove `Configure(std::map<>)` to avoid redundant copying and prepare for
   parameter validation. (`std::vector` is returned from `InitAllowUnknown`).
** Add name to tree updaters for easier debugging.

* Learner changes:
** Make `LearnerImpl` the only source of configuration.

    All configurations are stored and carried out by `LearnerImpl::Configure()`.

** Remove booster in C API.

    Originally kept for "compatibility reason", but did not state why.  So here
    we just remove it.

** Add a `metric_names_` field in `LearnerImpl`.
** Remove `LazyInit`.  Configuration will always be lazy.
** Run `Configure` before every iteration.

* Predictor changes:
** Allocate both cpu and gpu predictor.
** Remove cpu_predictor from gpu_predictor.

    `GBTree` is now used to dispatch the predictor.

** Remove some GPU Predictor tests.

* IO

No IO changes.  The binary model format stability is tested by comparing
hashing value of save models between two commits
2019-07-20 08:34:56 -04:00
Jiaming Yuan
2f1319f273
Add rmsle metric and reg:squaredlogerror objective (#4541) 2019-06-11 05:48:27 +08:00
Jiaming Yuan
da21ac0cc2
Fix tweedie metric string. (#4543) 2019-06-09 09:52:29 +08:00
Jiaming Yuan
c589eff941
De-duplicate GPU parameters. (#4454)
* Only define `gpu_id` and `n_gpus` in `LearnerTrainParam`
* Pass LearnerTrainParam through XGBoost vid factory method.
* Disable all GPU usage when GPU related parameters are not specified (fixes XGBoost choosing GPU over aggressively).
* Test learner train param io.
* Fix gpu pickling.
2019-05-29 11:55:57 +08:00
Rong Ou
eaab364a63 More explict sharding methods for device memory (#4396)
* Rename the Reshard method to Shard

* Add a new Reshard method for sharding a vector that's already sharded
2019-05-01 11:47:22 +12:00
Jiaming Yuan
29a1356669
Deprecate reg:linear' in favor of reg:squarederror'. (#4267)
* Deprecate `reg:linear' in favor of `reg:squarederror'.
* Replace the use of `reg:linear'.
* Replace the use of `silent`.
2019-03-17 17:55:04 +08:00
Jiaming Yuan
2e618af743
Fix cpplint. (#4157)
* Add comment after #endif.
* Add missing headers.
2019-02-18 00:16:29 +08:00
Jiaming Yuan
daf77ca7b7
Enable running objectives with 0 GPU. (#3878)
* Enable running objectives with 0 GPU.

* Enable 0 GPU for objectives.
* Add doc for GPU objectives.
* Fix some objectives defaulted to running on all GPUs.
2018-11-13 20:19:59 +13:00
Jiaming Yuan
f1275f52c1
Fix specifying gpu_id, add tests. (#3851)
* Rewrite gpu_id related code.

* Remove normalised/unnormalised operatios.
* Address difference between `Index' and `Device ID'.
* Modify doc for `gpu_id'.
* Better LOG for GPUSet.
* Check specified n_gpus.
* Remove inappropriate `device_idx' term.
* Clarify GpuIdType and size_t.
2018-11-06 18:17:53 +13:00
Andy Adinets
2a59ff2f9b Multi-GPU support in GPUPredictor. (#3738)
* Multi-GPU support in GPUPredictor.

- GPUPredictor is multi-GPU
- removed DeviceMatrix, as it has been made obsolete by using HostDeviceVector in DMatrix

* Replaced pointers with spans in GPUPredictor.

* Added a multi-GPU predictor test.

* Fix multi-gpu test.

* Fix n_rows < n_gpus.

* Reinitialize shards when GPUSet is changed.
* Tests range of data.

* Remove commented code.

* Remove commented code.
2018-10-23 22:59:11 -07:00
Rory Mitchell
f00fd87b36
Address #2754, accuracy issues with gpu_hist (#3793)
* Address windows compilation error

* Do not allow divide by zero in weight calculation

* Update tests
2018-10-15 17:50:31 +13:00
trivialfis
d594b11f35 Implement transform to reduce CPU/GPU code duplication. (#3643)
* Implement Transform class.
* Add tests for softmax.
* Use Transform in regression, softmax and hinge objectives, except for Cox.
* Mark old gpu objective functions deprecated.
* static_assert for softmax.
* Split up multi-gpu tests.
2018-10-02 15:06:21 +13:00
Andy Adinets
72cd1517d6 Replaced std::vector with HostDeviceVector in MetaInfo and SparsePage. (#3446)
* Replaced std::vector with HostDeviceVector in MetaInfo and SparsePage.

- added distributions to HostDeviceVector
- using HostDeviceVector for labels, weights and base margings in MetaInfo
- using HostDeviceVector for offset and data in SparsePage
- other necessary refactoring

* Added const version of HostDeviceVector API calls.

- const versions added to calls that can trigger data transfers, e.g. DevicePointer()
- updated the code that uses HostDeviceVector
- objective functions now accept const HostDeviceVector<bst_float>& for predictions

* Updated src/linear/updater_gpu_coordinate.cu.

* Added read-only state for HostDeviceVector sync.

- this means no copies are performed if both host and devices access
  the HostDeviceVector read-only

* Fixed linter and test errors.

- updated the lz4 plugin
- added ConstDeviceSpan to HostDeviceVector
- using device % dh::NVisibleDevices() for the physical device number,
  e.g. in calls to cudaSetDevice()

* Fixed explicit template instantiation errors for HostDeviceVector.

- replaced HostDeviceVector<unsigned int> with HostDeviceVector<int>

* Fixed HostDeviceVector tests that require multiple GPUs.

- added a mock set device handler; when set, it is called instead of cudaSetDevice()
2018-08-30 14:28:47 +12:00
trivialfis
60787ecebc Merge generic device helper functions into gpu set. (#3626)
* Remove the use of old NDevices* functions.
* Use GPUSet in timer.h.
2018-08-26 18:14:23 +12:00
trivialfis
2c502784ff Span class. (#3548)
* Add basic Span class based on ISO++20.

* Use Span<Entry const> instead of Inst in SparsePage.

* Add DeviceSpan in HostDeviceVector, use it in regression obj.
2018-08-14 17:58:11 +12:00
Henry Gouk
69454d9487 Implementation of hinge loss for binary classification (#3477) 2018-08-07 10:06:42 +12:00
pdesahb
12e34f32e2 Fix tweedie handling of base_score (#3295)
* fix tweedie margin calculations

* add entry to contributors
2018-06-28 15:43:05 +00:00
ngoyal2707
5cd851ccef added code for instance based weighing for rank objectives (#3379)
* added code for instance based weighing for rank objectives

* Fix lint
2018-06-22 15:10:59 -07:00
Thejaswi
d367e4fc6b Fix for issue 3306. (#3324) 2018-05-23 13:42:20 +12:00
Rory Mitchell
088bb4b27c
Prevent multiclass Hessian approaching 0 (#3304)
* Prevent Hessian in multiclass objective becoming zero

* Set default learning rate to 0.5 for "coord_descent" linear updater
2018-05-09 20:25:51 +12:00
Andrew V. Adinetz
b8a0d66fe6 Multi-GPU HostDeviceVector. (#3287)
* Multi-GPU HostDeviceVector.

- HostDeviceVector instances can now span multiple devices, defined by GPUSet struct
- the interface of HostDeviceVector has been modified accordingly
- GPU objective functions are now multi-GPU
- GPU predicting from cache is now multi-GPU
- avoiding omp_set_num_threads() calls
- other minor changes
2018-05-05 08:00:05 +12:00
Rory Mitchell
ccf80703ef
Clang-tidy static analysis (#3222)
* Clang-tidy static analysis

* Modernise checks

* Google coding standard checks

* Identifier renaming according to Google style
2018-04-19 18:57:13 +12:00
Andrew V. Adinetz
d5992dd881 Replaced std::vector-based interfaces with HostDeviceVector-based interfaces. (#3116)
* Replaced std::vector-based interfaces with HostDeviceVector-based interfaces.

- replacement was performed in the learner, boosters, predictors,
  updaters, and objective functions
- only interfaces used in training were replaced;
  interfaces like PredictInstance() still use std::vector
- refactoring necessary for replacement of interfaces was also performed,
  such as using HostDeviceVector in prediction cache

* HostDeviceVector-based interfaces for custom objective function example plugin.
2018-02-28 13:00:04 +13:00
Vadim Khotilovich
9ffe8596f2
[core] fix slow predict-caching with many classes (#3109)
* fix prediction caching inefficiency for multiclass

* silence some warnings

* redundant if

* workaround for R v3.4.3 bug; fixes #3081
2018-02-15 18:31:42 -06:00
Scott Lundberg
d878c36c84 Add SHAP interaction effects, fix minor bug, and add cox loss (#3043)
* Add interaction effects and cox loss

* Minimize whitespace changes

* Cox loss now no longer needs a pre-sorted dataset.

* Address code review comments

* Remove mem check, rename to pred_interactions, include bias

* Make lint happy

* More lint fixes

* Fix cox loss indexing

* Fix main effects and tests

* Fix lint

* Use half interaction values on the off-diagonals

* Fix lint again
2018-02-07 20:38:01 -06:00
Rory Mitchell
f87802f00c
Fix GPU bugs (#3051)
* Change uint to unsigned int

* Fix no root predictions bug

* Remove redundant splitting due to numerical instability
2018-01-23 13:14:15 +13:00
Thejaswi
84ab74f3a5 Objective function evaluation on GPU with minimal PCIe transfers (#2935)
* Added GPU objective function and no-copy interface.

- xgboost::HostDeviceVector<T> syncs automatically between host and device
- no-copy interfaces have been added
- default implementations just sync the data to host
  and call the implementations with std::vector
- GPU objective function, predictor, histogram updater process data
  directly on GPU
2018-01-12 21:33:39 +13:00
Rory Mitchell
24f527a1c0
AVX gradients (#2878)
* AVX gradients

* Add google test for AVX

* Create fallback implementation, remove fma instruction

* Improved accuracy of AVX exp function
2017-11-27 08:56:01 +13:00
Rory Mitchell
40c6e2f0c8
Improved gpu_hist_experimental algorithm (#2866)
- Implement colsampling, subsampling for gpu_hist_experimental

 - Optimised multi-GPU implementation for gpu_hist_experimental

 - Make nccl optional

 - Add Volta architecture flag

 - Optimise RegLossObj

 - Add timing utilities for debug verbose mode

 - Bump required cuda version to 8.0
2017-11-11 13:58:40 +13:00