* Use sparse page as singular CSR matrix representation
* Simplify dmatrix methods
* Reduce statefullness of batch iterators
* BREAKING CHANGE: Remove prob_buffer_row parameter. Users are instead recommended to sample their dataset as a preprocessing step before using XGBoost.
* Add interaction effects and cox loss
* Minimize whitespace changes
* Cox loss now no longer needs a pre-sorted dataset.
* Address code review comments
* Remove mem check, rename to pred_interactions, include bias
* Make lint happy
* More lint fixes
* Fix cox loss indexing
* Fix main effects and tests
* Fix lint
* Use half interaction values on the off-diagonals
* Fix lint again
* Added GPU objective function and no-copy interface.
- xgboost::HostDeviceVector<T> syncs automatically between host and device
- no-copy interfaces have been added
- default implementations just sync the data to host
and call the implementations with std::vector
- GPU objective function, predictor, histogram updater process data
directly on GPU
* [CORE] allow updating trees in an existing model
* [CORE] in refresh updater, allow keeping old leaf values and update stats only
* [R-package] xgb.train mod to allow updating trees in an existing model
* [R-package] added check for nrounds when is_update
* [CORE] merge parameter declaration changes; unify their code style
* [CORE] move the update-process trees initialization to Configure; rename default process_type to 'default'; fix the trees and trees_to_update sizes comparison check
* [R-package] unit tests for the update process type
* [DOC] documentation for process_type parameter; improved docs for updater, Gamma and Tweedie; added some parameter aliases; metrics indentation and some were non-documented
* fix my sloppy merge conflict resolutions
* [CORE] add a TreeProcessType enum
* whitespace fix
* add support for tweedie regression
* added back readme line that was accidentally deleted
* fixed linting errors
* add support for tweedie regression
* added back readme line that was accidentally deleted
* fixed linting errors
* rebased with upstream master and added R example
* changed parameter name to tweedie_variance_power
* linting error fix
* refactored tweedie-nloglik metric to be more like the other parameterized metrics
* added upper and lower bound check to tweedie metric
* add support for tweedie regression
* added back readme line that was accidentally deleted
* fixed linting errors
* added upper and lower bound check to tweedie metric
* added back readme line that was accidentally deleted
* rebased with upstream master and added R example
* rebased again on top of upstream master
* linting error fix
* added upper and lower bound check to tweedie metric
* rebased with master
* lint fix
* removed whitespace at end of line 186 - elementwise_metric.cc
* Fix typos and messages in docs
* parameter.md: Add docs for updater_seq
Mention the updater_seq parameter which sets the order of the tree
updaters to run and also specifies which ones to run. This can be
useful when pruning is not required or even a custom plugin is
being built along with xgboost.
* Add deviance metric for gamma regression
* Simplify the computation of nloglik for gamma regression
* Add a description for gamma-deviance
* Minor fix
* Add support for Gamma regression
* Use base_score to replace the lp_bias
* Remove the lp_bias config block
* Add a demo for running gamma regression in Python
* Typo fix
* Revise the description for objective
* Add a script to generate the autoclaims dataset