- Reduce dependency on dmlc parsers and provide an interface for users to load data by themselves.
- Remove use of threaded iterator and IO queue.
- Remove `page_size`.
- Make sure the number of pages in memory is bounded.
- Make sure the cache can not be violated.
- Provide an interface for internal algorithms to process data asynchronously.
* [CI] Add RMM as an optional dependency
* Replace caching allocator with pool allocator from RMM
* Revert "Replace caching allocator with pool allocator from RMM"
This reverts commit e15845d4e72e890c2babe31a988b26503a7d9038.
* Use rmm::mr::get_default_resource()
* Try setting default resource (doesn't work yet)
* Allocate pool_mr in the heap
* Prevent leaking pool_mr handle
* Separate EXPECT_DEATH() in separate test suite suffixed DeathTest
* Turn off death tests for RMM
* Address reviewer's feedback
* Prevent leaking of cuda_mr
* Fix Jenkinsfile syntax
* Remove unnecessary function in Jenkinsfile
* [CI] Install NCCL into RMM container
* Run Python tests
* Try building with RMM, CUDA 10.0
* Do not use RMM for CUDA 10.0 target
* Actually test for test_rmm flag
* Fix TestPythonGPU
* Use CNMeM allocator, since pool allocator doesn't yet support multiGPU
* Use 10.0 container to build RMM-enabled XGBoost
* Revert "Use 10.0 container to build RMM-enabled XGBoost"
This reverts commit 789021fa31112e25b683aef39fff375403060141.
* Fix Jenkinsfile
* [CI] Assign larger /dev/shm to NCCL
* Use 10.2 artifact to run multi-GPU Python tests
* Add CUDA 10.0 -> 11.0 cross-version test; remove CUDA 10.0 target
* Rename Conda env rmm_test -> gpu_test
* Use env var to opt into CNMeM pool for C++ tests
* Use identical CUDA version for RMM builds and tests
* Use Pytest fixtures to enable RMM pool in Python tests
* Move RMM to plugin/CMakeLists.txt; use PLUGIN_RMM
* Use per-device MR; use command arg in gtest
* Set CMake prefix path to use Conda env
* Use 0.15 nightly version of RMM
* Remove unnecessary header
* Fix a unit test when cudf is missing
* Add RMM demos
* Remove print()
* Use HostDeviceVector in GPU predictor
* Simplify pytest setup; use LocalCUDACluster fixture
* Address reviewers' commments
Co-authored-by: Hyunsu Cho <chohyu01@cs.wasshington.edu>
* Use pre-rounding based method to obtain reproducible floating point
summation.
* GPU Hist for regression and classification are bit-by-bit reproducible.
* Add doc.
* Switch to thrust reduce for `node_sum_gradient`.
- move segment sorter to common
- this is the first of a handful of pr's that splits the larger pr #5326
- it moves this facility to common (from ranking objective class), so that it can be
used for metric computation
- it also wraps all the bald device pointers into span.
* Extract interaction constraints from split evaluator.
The reason for doing so is mostly for model IO, where num_feature and interaction_constraints are copied in split evaluator. Also interaction constraint by itself is a feature selector, acting like column sampler and it's inefficient to bury it deep in the evaluator chain. Lastly removing one another copied parameter is a win.
* Enable inc for approx tree method.
As now the implementation is spited up from evaluator class, it's also enabled for approx method.
* Removing obsoleted code in colmaker.
They are never documented nor actually used in real world. Also there isn't a single test for those code blocks.
* Unifying the types used for row and column.
As the size of input dataset is marching to billion, incorrect use of int is subject to overflow, also singed integer overflow is undefined behaviour. This PR starts the procedure for unifying used index type to unsigned integers. There's optimization that can utilize this undefined behaviour, but after some testings I don't see the optimization is beneficial to XGBoost.