- Introduce an abstract XGBoost Estimator
- Update to the latest XGBoost parameters
- Add all XGBoost parameters supported in XGBoost4j-spark.
- Add setter and getter for these parameters.
- Remove the deprecated parameters
- Address the missing value handling
- Remove any ETL operations in XGBoost
- Rework the GPU plugin
- Expand sanity tests for CPU and GPU consistency
This PR replaces the original RABIT implementation with a new one, which has already been partially merged into XGBoost. The new one features:
- Federated learning for both CPU and GPU.
- NCCL.
- More data types.
- A unified interface for all the underlying implementations.
- Improved timeout handling for both tracker and workers.
- Exhausted tests with metrics (fixed a couple of bugs along the way).
- A reusable tracker for Python and JVM packages.
- Add `numBoostedRound` to jvm packages
- Remove rabit checkpoint version.
- Change the starting version of training continuation in JVM [breaking].
- Redefine the checkpoint version policy in jvm package. [breaking]
- Rename the Python check point callback parameter. [breaking]
- Unifies the checkpoint policy between Python and JVM.
* 1. Add parameters to set feature names and feature types
2. Save feature names and feature types to native json model
* Change serialization and deserialization format to ubj.
* [jvm-packages] Bump rapids version to 22.12.0
This PR bumps spark version to 3.1.1 and the rapids version
to 22.12.0, which results in the latest xgboost can't run
with the old rapids packages.
* [jvm-packages] fix spark-rapids compatibility issue
spark-rapids (from 22.10) has shimmed GpuColumnVector, which means
we can't call it directly. So this PR call the UnshimmedGpuColumnVector
* [jvm-packages] fix executor crashing issue when transforming on xgboost4j-spark-gpu
the API XGBoosterSetParam is not thread-safe. Dring the phase of transforming,
XGBoost runs several transforming tasks at a time, and each of them will set
the "gpu_id" and "predictor" parameters, so if several tasks (multi-threads)
all XGBoosterSetParam simultaneously, it may cause the memory to be corrupted
and cause SIGSEGV.
This PR first get the booster from broadcast and set to the correct gpu_id
and predictor, and then all transforming taskes will use the same booster to
do the transforming.
With the introduction of the barrier execution mode. we don't need to kill SparkContext when some xgboost tasks failed. Instead, Spark will handle the errors for us. So in this PR, `killSparkContextOnWorkerFailure` parameter is deleted.