14 Commits

Author SHA1 Message Date
Jiaming Yuan
39c1488a42
[backport] Update CUDA docker image and NCCL. (#8139) (#8162)
* Update CUDA docker image and NCCL. (#8139)

* Rest of the CI.

* CPU test dependencies.
2022-08-12 18:57:42 +08:00
Jiaming Yuan
5973c6e74e
Fix rmm build (#7973) (#7977)
- Optionally switch to c++17
- Use rmm CMake target.
- Workaround compiler errors.
- Fix GPUMetric inheritance.
- Run death tests even if it's built with RMM support.

Co-authored-by: jakirkham <jakirkham@gmail.com>

Co-authored-by: jakirkham <jakirkham@gmail.com>
2022-06-07 14:20:50 +08:00
Jiaming Yuan
eefa1ddd8a
[CI] Rotate package repository keys (#7943) (#7978)
Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
2022-06-07 00:00:54 +08:00
Jiaming Yuan
ca17f8a5fc
Dispatch thrust versions and upgrade rmm. (#7254)
Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
2021-09-25 03:43:23 +08:00
Philip Hyunsu Cho
b2d300e727
[CI] Upgrade to CMake 3.14 (#7060)
* [CI] Upgrade to CMake 3.14

* Add FATAL_ERROR directive, for users with CMake 2.x
2021-06-24 18:07:24 -07:00
Jiaming Yuan
dcd84b3979
[CI] Configure RAPIDS, dask, modin (#7033)
Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
2021-06-18 10:27:51 +08:00
Philip Hyunsu Cho
05db6a6c29
[CI] Upgrade cuDF and RMM to 21.06 nightly (#7012)
* [CI] Upgrade cuDF and RMM to 21.06 nightly

* Trim outdated test cases

* Pin Dask version to 2021.05.0 for now
2021-06-02 11:59:30 -07:00
Philip Hyunsu Cho
366f3cb9d8
Add use_rmm flag to global configuration (#6656)
* Ensure RMM is 0.18 or later

* Add use_rmm flag to global configuration

* Modify XGBCachingDeviceAllocatorImpl to skip CUB when use_rmm=True

* Update the demo

* [CI] Pin NumPy to 1.19.4, since NumPy 1.19.5 doesn't work with latest Shap
2021-03-09 14:53:05 -08:00
Philip Hyunsu Cho
bf6cfe3b99
[Breaking] Upgrade cuDF and RMM to 0.18 nightlies; require RMM 0.18+ for RMM plugin (#6510)
* [CI] Upgrade cuDF and RMM to 0.18 nightlies

* Modify RMM plugin to be compatible with RMM 0.18

* Update src/common/device_helpers.cuh

Co-authored-by: Mark Harris <mharris@nvidia.com>

Co-authored-by: Mark Harris <mharris@nvidia.com>
2020-12-16 10:07:52 -08:00
Philip Hyunsu Cho
4dbbeb635d
[CI] Upgrade cuDF and RMM to 0.17 nightlies (#6434) 2020-11-24 13:21:41 -08:00
James Lamb
e1de390e6e
[ci] replace 'egrep' with 'grep -E' (#6287) 2020-10-27 12:05:48 -07:00
Philip Hyunsu Cho
f121f2738f
[CI] Fix Docker build for CUDA 11 (#6202) 2020-10-05 17:54:14 -07:00
Philip Hyunsu Cho
678ea40b24
[CI] Upgrade cuDF and RMM to 0.16 nightlies; upgrade to Ubuntu 18.04 (#6157)
* [CI] Upgrade cuDF and RMM to 0.16 nightlies

* Use Ubuntu 18.04 in RMM test, since RMM needs GCC 7+
2020-09-23 19:48:44 -07:00
Philip Hyunsu Cho
9adb812a0a
RMM integration plugin (#5873)
* [CI] Add RMM as an optional dependency

* Replace caching allocator with pool allocator from RMM

* Revert "Replace caching allocator with pool allocator from RMM"

This reverts commit e15845d4e72e890c2babe31a988b26503a7d9038.

* Use rmm::mr::get_default_resource()

* Try setting default resource (doesn't work yet)

* Allocate pool_mr in the heap

* Prevent leaking pool_mr handle

* Separate EXPECT_DEATH() in separate test suite suffixed DeathTest

* Turn off death tests for RMM

* Address reviewer's feedback

* Prevent leaking of cuda_mr

* Fix Jenkinsfile syntax

* Remove unnecessary function in Jenkinsfile

* [CI] Install NCCL into RMM container

* Run Python tests

* Try building with RMM, CUDA 10.0

* Do not use RMM for CUDA 10.0 target

* Actually test for test_rmm flag

* Fix TestPythonGPU

* Use CNMeM allocator, since pool allocator doesn't yet support multiGPU

* Use 10.0 container to build RMM-enabled XGBoost

* Revert "Use 10.0 container to build RMM-enabled XGBoost"

This reverts commit 789021fa31112e25b683aef39fff375403060141.

* Fix Jenkinsfile

* [CI] Assign larger /dev/shm to NCCL

* Use 10.2 artifact to run multi-GPU Python tests

* Add CUDA 10.0 -> 11.0 cross-version test; remove CUDA 10.0 target

* Rename Conda env rmm_test -> gpu_test

* Use env var to opt into CNMeM pool for C++ tests

* Use identical CUDA version for RMM builds and tests

* Use Pytest fixtures to enable RMM pool in Python tests

* Move RMM to plugin/CMakeLists.txt; use PLUGIN_RMM

* Use per-device MR; use command arg in gtest

* Set CMake prefix path to use Conda env

* Use 0.15 nightly version of RMM

* Remove unnecessary header

* Fix a unit test when cudf is missing

* Add RMM demos

* Remove print()

* Use HostDeviceVector in GPU predictor

* Simplify pytest setup; use LocalCUDACluster fixture

* Address reviewers' commments

Co-authored-by: Hyunsu Cho <chohyu01@cs.wasshington.edu>
2020-08-12 01:26:02 -07:00