63 Commits

Author SHA1 Message Date
Jiaming Yuan
972730cde0
Use matrix for gradient. (#9508)
- Use the `linalg::Matrix` for storing gradients.
- New API for the custom objective.
- Custom objective for multi-class/multi-target is now required to return the correct shape.
- Custom objective for Python can accept arrays with any strides. (row-major, column-major)
2023-08-24 05:29:52 +08:00
Jiaming Yuan
39390cc2ee
[breaking] Remove the predictor param, allow fallback to prediction using DMatrix. (#9129)
- A `DeviceOrd` struct is implemented to indicate the device. It will eventually replace the `gpu_id` parameter.
- The `predictor` parameter is removed.
- Fallback to `DMatrix` when `inplace_predict` is not available.
- The heuristic for choosing a predictor is only used during training.
2023-07-03 19:23:54 +08:00
Jiaming Yuan
acc110c251
[MT-TREE] Support prediction cache and model slicing. (#8968)
- Fix prediction range.
- Support prediction cache in mt-hist.
- Support model slicing.
- Make the booster a Python iterable by defining `__iter__`.
- Cleanup removed/deprecated parameters.
- A new field in the output model `iteration_indptr` for pointing to the ranges of trees for each iteration.
2023-03-27 23:10:54 +08:00
Jiaming Yuan
36a7396658
Replace dmlc any with std any. (#8892) 2023-03-11 06:11:04 +08:00
Jiaming Yuan
d11a0044cf
Generalize prediction cache. (#8783)
* Extract most of the functionality into `DMatrixCache`.
* Move API entry to independent file to reduce dependency on `predictor.h` file.
* Add test.

---------

Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
2023-02-13 12:36:43 +08:00
Jiaming Yuan
3e26107a9c
Rename and extract Context. (#8528)
* Rename `GenericParameter` to `Context`.
* Rename header file to reflect the change.
* Rename all references.
2022-12-07 04:58:54 +08:00
Jiaming Yuan
031d66ec27
Configuration for init estimation. (#8343)
* Configuration for init estimation.

* Check whether the model needs configuration based on const attribute `ModelFitted`
instead of a mutable state.
* Add parameter `boost_from_average` to tell whether the user has specified base score.
* Add tests.
2022-10-18 01:52:24 +08:00
Jiaming Yuan
142a208a90
Fix compiler warnings. (#8022)
- Remove/fix unused parameters
- Remove deprecated code in rabit.
- Update dmlc-core.
2022-06-22 21:29:10 +08:00
Jiaming Yuan
1a33b50a0d
Fix compiler warnings. (#7974)
- Remove unused parameters. There are still many warnings that are not yet
addressed. Currently, the warnings in dmlc-core dominate the error log.
- Remove `distributed` parameter from metric.
- Fixes some warnings about signed comparison.
2022-06-06 22:56:25 +08:00
Jiaming Yuan
765097d514
Simplify inplace-predict. (#7910)
Pass the `X` as part of Proxy DMatrix instead of an independent `dmlc::any`.
2022-05-18 17:52:00 +08:00
Jiaming Yuan
fdf533f2b9
[POC] Experimental support for l1 error. (#7812)
Support adaptive tree, a feature supported by both sklearn and lightgbm.  The tree leaf is recomputed based on residue of labels and predictions after construction.

For l1 error, the optimal value is the median (50 percentile).

This is marked as experimental support for the following reasons:
- The value is not well defined for distributed training, where we might have empty leaves for local workers. Right now I just use the original leaf value for computing the average with other workers, which might cause significant errors.
- Some follow-ups are required, for exact, pruner, and optimization for quantile function. Also, we need to calculate the initial estimation.
2022-04-26 21:41:55 +08:00
Jiaming Yuan
81210420c6
Remove omp_get_max_threads (#7608)
This is the one last PR for removing omp global variable.

* Add context object to the `DMatrix`.  This bridges `DMatrix` with https://github.com/dmlc/xgboost/issues/7308 .
* Require context to be available at the construction time of booster.
* Add `n_threads` support for R csc DMatrix constructor.
* Remove `omp_get_max_threads` in R glue code.
* Remove threading utilities that rely on omp global variable.
2022-01-28 16:09:22 +08:00
Jiaming Yuan
28af6f9abb
Remove omp_get_max_threads in gbm and linear. (#7537)
* Use ctx in gbm.

* Use ctx threads in gbm and linear.
2022-01-05 03:28:52 +08:00
Jiaming Yuan
c968217ca8
[R] Fix global feature importance and predict with 1 sample. (#7394)
* [R] Fix global feature importance.

* Add implementation for tree index.  The parameter is not documented in C API since we
should work on porting the model slicing to R instead of supporting more use of tree
index.

* Fix the difference between "gain" and "total_gain".

* debug.

* Fix prediction.
2021-11-05 10:07:00 +08:00
Jiaming Yuan
663136aa08
Implement feature score for linear model. (#7048)
* Add feature score support for linear model.
* Port R interface to the new implementation.
* Add linear model support in Python.

Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
2021-06-25 14:34:02 +08:00
Jiaming Yuan
7dd29ffd47
Implement feature score in GBTree. (#7041)
* Categorical data support.
* Eliminate text parsing during feature score computation.
2021-06-18 11:53:16 +08:00
Jiaming Yuan
4656b09d5d
[breaking] Add prediction fucntion for DMatrix and use inplace predict for dask. (#6668)
* Add a new API function for predicting on `DMatrix`.  This function aligns
with rest of the `XGBoosterPredictFrom*` functions on semantic of function
arguments.
* Purge `ntree_limit` from libxgboost, use iteration instead.
* [dask] Use `inplace_predict` by default for dask sklearn models.
* [dask] Run prediction shape inference on worker instead of client.

The breaking change is in the Python sklearn `apply` function, I made it to be
consistent with other prediction functions where `best_iteration` is used by
default.
2021-02-08 18:26:32 +08:00
Jiaming Yuan
411592a347
Enhance inplace prediction. (#6653)
* Accept array interface for csr and array.
* Accept an optional proxy dmatrix for metainfo.

This constructs an explicit `_ProxyDMatrix` type in Python.

* Remove unused doc.
* Add strict output.
2021-02-02 11:41:46 +08:00
Jiaming Yuan
ca3da55de4
Support early stopping with training continuation, correct num boosted rounds. (#6506)
* Implement early stopping with training continuation.

* Add new C API for obtaining boosted rounds.

* Fix off by 1 in `save_best`.

Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
2020-12-17 19:59:19 +08:00
Jiaming Yuan
8a17610666
Implement GPU predict leaf. (#6187) 2020-11-11 17:33:47 +08:00
Jiaming Yuan
2cc9662005
Support slicing tree model (#6302)
This PR is meant the end the confusion around best_ntree_limit and unify model slicing. We have multi-class and random forests, asking users to understand how to set ntree_limit is difficult and error prone.

* Implement the save_best option in early stopping.

Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
2020-11-02 23:27:39 -08:00
Igor Moura
d1254808d5
Clean up C++ warnings (#6213) 2020-10-19 23:02:33 +08:00
Rory Mitchell
dda9e1e487
Update GPUTreeshap (#6163)
* Reduce shap test duration

* Test interoperability with shap package

* Add feature interactions

* Update GPUTreeShap
2020-09-28 09:43:47 +13:00
Philip Hyunsu Cho
1d22a9be1c
Revert "Reorder includes. (#5749)" (#5771)
This reverts commit d3a0efbf162f3dceaaf684109e1178c150b32de3.
2020-06-09 10:29:28 -07:00
Jiaming Yuan
d3a0efbf16
Reorder includes. (#5749)
* Reorder includes.

* R.
2020-06-03 17:30:47 +12:00
Jiaming Yuan
6671b42dd4
Use ellpack for prediction only when sparsepage doesn't exist. (#5504) 2020-04-10 12:15:46 +08:00
Jiaming Yuan
6601a641d7
Thread safe, inplace prediction. (#5389)
Normal prediction with DMatrix is now thread safe with locks.  Added inplace prediction is lock free thread safe.

When data is on device (cupy, cudf), the returned data is also on device.

* Implementation for numpy, csr, cudf and cupy.

* Implementation for dask.

* Remove sync in simple dmatrix.
2020-03-30 15:35:28 +08:00
Jiaming Yuan
0110754a76
Remove update prediction cache from predictors. (#5312)
Move this function into gbtree, and uses only updater for doing so. As now the predictor knows exactly how many trees to predict, there's no need for it to update the prediction cache.
2020-02-17 11:35:47 +08:00
Jiaming Yuan
c35cdecddd
Move prediction cache to Learner. (#5220)
* Move prediction cache into Learner.

* Clean-ups

- Remove duplicated cache in Learner and GBM.
- Remove ad-hoc fix of invalid cache.
- Remove `PredictFromCache` in predictors.
- Remove prediction cache for linear altogether, as it's only moving the
  prediction into training process but doesn't provide any actual overall speed
  gain.
- The cache is now unique to Learner, which means the ownership is no longer
  shared by any other components.

* Changes

- Add version to prediction cache.
- Use weak ptr to check expired DMatrix.
- Pass shared pointer instead of raw pointer.
2020-02-14 13:04:23 +08:00
Kodi Arfer
f100b8d878 [Breaking] Don't drop trees during DART prediction by default (#5115)
* Simplify DropTrees calling logic

* Add `training` parameter for prediction method.

* [Breaking]: Add `training` to C API.

* Change for R and Python custom objective.

* Correct comment.

Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
Co-authored-by: Jiaming Yuan <jm.yuan@outlook.com>
2020-01-13 21:48:30 +08:00
Jiaming Yuan
3136185bc5
JSON configuration IO. (#5111)
* Add saving/loading JSON configuration.
* Implement Python pickle interface with new IO routines.
* Basic tests for training continuation.
2019-12-15 17:31:53 +08:00
Jiaming Yuan
208ab3b1ff
Model IO in JSON. (#5110) 2019-12-11 11:20:40 +08:00
Jiaming Yuan
e089e16e3d
Pass pointer to model parameters. (#5101)
* Pass pointer to model parameters.

This PR de-duplicates most of the model parameters except the one in
`tree_model.h`.  One difficulty is `base_score` is a model property but can be
changed at runtime by objective function.  Hence when performing model IO, we
need to save the one provided by users, instead of the one transformed by
objective.  Here we created an immutable version of `LearnerModelParam` that
represents the value of model parameter after configuration.
2019-12-10 12:11:22 +08:00
Jiaming Yuan
608ebbe444
Fix GPU ID and prediction cache from pickle (#5086)
* Hack for saving GPU ID.

* Declare prediction cache on GBTree.

* Add a simple test.

* Add `auto` option for GPU Predictor.
2019-12-07 16:02:06 +08:00
Jiaming Yuan
64af1ecf86
[Breaking] Remove num roots. (#5059) 2019-12-05 21:58:43 +08:00
Jiaming Yuan
095de3bf5f
Export c++ headers in CMake installation. (#4897)
* Move get transpose into cc.

* Clean up headers in host device vector, remove thrust dependency.

* Move span and host device vector into public.

* Install c++ headers.

* Short notes for c and c++.

Co-Authored-By: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
2019-10-06 23:53:09 -04:00
Jiaming Yuan
c0fbeff0ab
Restrict access to cfg_ in gbm. (#4801)
* Restrict access to `cfg_` in gbm.

* Verify having correct updaters.

* Remove `grow_global_histmaker`

This updater is the same as `grow_histmaker`.  The former is not in our
document so we just remove it.
2019-09-02 00:43:19 -04:00
Jiaming Yuan
f0064c07ab
Refactor configuration [Part II]. (#4577)
* Refactor configuration [Part II].

* General changes:
** Remove `Init` methods to avoid ambiguity.
** Remove `Configure(std::map<>)` to avoid redundant copying and prepare for
   parameter validation. (`std::vector` is returned from `InitAllowUnknown`).
** Add name to tree updaters for easier debugging.

* Learner changes:
** Make `LearnerImpl` the only source of configuration.

    All configurations are stored and carried out by `LearnerImpl::Configure()`.

** Remove booster in C API.

    Originally kept for "compatibility reason", but did not state why.  So here
    we just remove it.

** Add a `metric_names_` field in `LearnerImpl`.
** Remove `LazyInit`.  Configuration will always be lazy.
** Run `Configure` before every iteration.

* Predictor changes:
** Allocate both cpu and gpu predictor.
** Remove cpu_predictor from gpu_predictor.

    `GBTree` is now used to dispatch the predictor.

** Remove some GPU Predictor tests.

* IO

No IO changes.  The binary model format stability is tested by comparing
hashing value of save models between two commits
2019-07-20 08:34:56 -04:00
Jiaming Yuan
c5719cc457
Offload some configurations into GBM. (#4553)
This is part 1 of refactoring configuration.

* Move tree heuristic configurations.
* Split up declarations and definitions for GBTree.
* Implement UseGPU in gbm.
2019-06-14 09:18:51 +08:00
Jiaming Yuan
c589eff941
De-duplicate GPU parameters. (#4454)
* Only define `gpu_id` and `n_gpus` in `LearnerTrainParam`
* Pass LearnerTrainParam through XGBoost vid factory method.
* Disable all GPU usage when GPU related parameters are not specified (fixes XGBoost choosing GPU over aggressively).
* Test learner train param io.
* Fix gpu pickling.
2019-05-29 11:55:57 +08:00
Philip Hyunsu Cho
3c72654e3b
Revert "Fix #3485, #3540: Don't use dropout for predicting test sets" (#3563)
* Revert "Fix #3485, #3540: Don't use dropout for predicting test sets (#3556)"

This reverts commit 44811f233071c5805d70c287abd22b155b732727.

* Document behavior of predict() for DART booster

* Add notice to parameter.rst
2018-08-08 09:48:55 -07:00
Philip Hyunsu Cho
44811f2330
Fix #3485, #3540: Don't use dropout for predicting test sets (#3556)
* Fix #3485, #3540: Don't use dropout for predicting test sets

Dropout (for DART) should only be used at training time.

* Add regression test
2018-08-05 10:17:21 -07:00
Rory Mitchell
a96039141a
Dmatrix refactor stage 1 (#3301)
* Use sparse page as singular CSR matrix representation

* Simplify dmatrix methods

* Reduce statefullness of batch iterators

* BREAKING CHANGE: Remove prob_buffer_row parameter. Users are instead recommended to sample their dataset as a preprocessing step before using XGBoost.
2018-06-07 10:25:58 +12:00
Rory Mitchell
ccf80703ef
Clang-tidy static analysis (#3222)
* Clang-tidy static analysis

* Modernise checks

* Google coding standard checks

* Identifier renaming according to Google style
2018-04-19 18:57:13 +12:00
Andrew V. Adinetz
d5992dd881 Replaced std::vector-based interfaces with HostDeviceVector-based interfaces. (#3116)
* Replaced std::vector-based interfaces with HostDeviceVector-based interfaces.

- replacement was performed in the learner, boosters, predictors,
  updaters, and objective functions
- only interfaces used in training were replaced;
  interfaces like PredictInstance() still use std::vector
- refactoring necessary for replacement of interfaces was also performed,
  such as using HostDeviceVector in prediction cache

* HostDeviceVector-based interfaces for custom objective function example plugin.
2018-02-28 13:00:04 +13:00
Scott Lundberg
d878c36c84 Add SHAP interaction effects, fix minor bug, and add cox loss (#3043)
* Add interaction effects and cox loss

* Minimize whitespace changes

* Cox loss now no longer needs a pre-sorted dataset.

* Address code review comments

* Remove mem check, rename to pred_interactions, include bias

* Make lint happy

* More lint fixes

* Fix cox loss indexing

* Fix main effects and tests

* Fix lint

* Use half interaction values on the off-diagonals

* Fix lint again
2018-02-07 20:38:01 -06:00
Thejaswi
84ab74f3a5 Objective function evaluation on GPU with minimal PCIe transfers (#2935)
* Added GPU objective function and no-copy interface.

- xgboost::HostDeviceVector<T> syncs automatically between host and device
- no-copy interfaces have been added
- default implementations just sync the data to host
  and call the implementations with std::vector
- GPU objective function, predictor, histogram updater process data
  directly on GPU
2018-01-12 21:33:39 +13:00
Scott Lundberg
78c4188cec SHAP values for feature contributions (#2438)
* SHAP values for feature contributions

* Fix commenting error

* New polynomial time SHAP value estimation algorithm

* Update API to support SHAP values

* Fix merge conflicts with updates in master

* Correct submodule hashes

* Fix variable sized stack allocation

* Make lint happy

* Add docs

* Fix typo

* Adjust tolerances

* Remove unneeded def

* Fixed cpp test setup

* Updated R API and cleaned up

* Fixed test typo
2017-10-12 12:35:51 -07:00
Rory Mitchell
0e06d1805d [WIP] Extract prediction into separate interface (#2531)
* [WIP] Extract prediction into separate interface

* Add copyright, fix linter errors

* Add predictor to amalgamation

* Fix documentation

* Move prediction cache into predictor, add GBTreeModel

* Updated predictor doc comments
2017-07-28 17:01:03 -07:00
Vadim Khotilovich
b52db87d5c adding feature contributions to R and gblinear (#2295)
* [gblinear] add features contribution prediction; fix DumpModel bug

* [gbtree] minor changes to PredContrib

* [R] add feature contribution prediction to R

* [R] bump up version; update NEWS

* [gblinear] fix the base_margin issue; fixes #1969

* [R] list of matrices as output of multiclass feature contributions

* [gblinear] make order of DumpModel coefficients consistent: group index changes the fastest
2017-05-21 07:41:51 -04:00