- The new implementation is more strict as only binary labels are accepted. The previous implementation converts values greater than 1 to 1.
- Deterministic GPU. (no atomic add).
- Fix top-k handling.
- Precise definition of MAP. (There are other variants on how to handle top-k).
- Refactor GPU ranking tests.
* Re-implement ROC-AUC.
* Binary
* MultiClass
* LTR
* Add documents.
This PR resolves a few issues:
- Define a value when the dataset is invalid, which can happen if there's an
empty dataset, or when the dataset contains only positive or negative values.
- Define ROC-AUC for multi-class classification.
- Define weighted average value for distributed setting.
- A correct implementation for learning to rank task. Previous
implementation is just binary classification with averaging across groups,
which doesn't measure ordered learning to rank.