This PR replaces the original RABIT implementation with a new one, which has already been partially merged into XGBoost. The new one features:
- Federated learning for both CPU and GPU.
- NCCL.
- More data types.
- A unified interface for all the underlying implementations.
- Improved timeout handling for both tracker and workers.
- Exhausted tests with metrics (fixed a couple of bugs along the way).
- A reusable tracker for Python and JVM packages.
This PR adds optional support for loading nccl with `dlopen` as an alternative of compile time linking. This is to address the size bloat issue with the PyPI binary release.
- Add CMake option to load `nccl` at runtime.
- Add an NCCL stub.
After this, `nccl` will be fetched from PyPI when using pip to install XGBoost, either by a user or by `pyproject.toml`. Others who want to link the nccl at compile time can continue to do so without any change.
At the moment, this is Linux only since we only support MNMG on Linux.
* [java] extending the library loader to use both OS and CPU architecture.
* Simplifying create_jni.py's architecture detection.
* Tidying up the architecture detection in create_jni.py
CLI is not most developed interface. Putting them into correct directory can help new users to avoid it as most of the use cases are from a language binding.
* [CI] Clean up build for JVM packages
* Use correct path for saving native lib
* Fix groupId of maven-surefire-plugin
* Fix stashing of xgboost4j_jar_gpu
* [CI] Don't run xgboost4j-tester with GPU, since it doesn't use gpu_hist
* [jvm-packages] add gpu_hist tree method
* change updater hist to grow_quantile_histmaker
* add gpu scheduling
* pass correct parameters to xgboost library
* remove debug info
* add use.cuda for pom
* add CI for gpu_hist for jvm
* add gpu unit tests
* use gpu node to build jvm
* use nvidia-docker
* Add CLI interface to create_jni.py using argparse
Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
* Add BigDenseMatrix
* ability to create DMatrix with bigger than Integer.MAX_VALUE size arrays
* uses sun.misc.Unsafe
* make DMatrix test work from a jar as well
* [jvm-packages] Fixed compilation on Windows
* [jvm-packages] Build the JNI bindings on Appveyor
* [jvm-packages] Build & test on OS X
* [jvm-packages] Re-applied the CMake build changes reverted by #2395
* Fixed Appveyor JVM build
* Muted Maven on Travis
* Don't link with libawt
* "linux2"->"linux"
Python2.x and 3.X use slightly different values for ``sys.platform``.
* [jvm-packages] Replaced create_jni.{bat,sh} with a Python version
This allows to have a single script for all platforms.
* [jvm-packages] Added all configuration options to create_jni.py