* Fix various typos
* Add override to functions that are overridden
gcc gives warnings about functions that are being overridden by not
being marked as oveirridden. This fixes it.
* Use bst_float consistently
Use bst_float for all the variables that involve weight,
leaf value, gradient, hessian, gain, loss_chg, predictions,
base_margin, feature values.
In some cases, when due to additions and so on the value can
take a larger value, double is used.
This ensures that type conversions are minimal and reduces loss of
precision.
* added new function to calculate other feature importances
* added capability to plot other feature importance measures
* changed plotting default to fscore
* added info on importance_type to boilerplate comment
* updated text of error statement
* added self module name to fix call
* added unit test for feature importances
* style fixes
Changed the name of eval_results to evals_result, so that the naming is the same in training.py and sklearn.py
Made the structure of evals_result the same as in training.py, the names of the keys are different:
In sklearn.py you cannot name your evals_result, but they are automatically called 'validation_0', 'validation_1' etc.
The dict evals_result will output something like: {'validation_0': {'logloss': ['0.674800', '0.657121']}, 'validation_1': {'logloss': ['0.63776', '0.58372']}}
In training.py you can name your multiple evals_result with a watchlist like: watchlist = [(dtest,'eval'), (dtrain,'train')]
The dict evals_result will output something like: {'train': {'logloss': ['0.68495', '0.67691']}, 'eval': {'logloss': ['0.684877', '0.676767']}}
You can access the evals_result using the evals_result() function.