- Remove the calculation of n_symbols in the accessor.
- Pack initialization steps into the parameter list.
- Pass the context into various ctors.
- Specialization for dense data to prepare for further compression.
- Expose the maximum number of cached nodes to be consistent with the CPU implementation. Also easier for testing.
- Extract the subtraction trick for easier testing.
- Split up the `GradientQuantiser` to avoid circular dependency.
- Use `UpdatePosition` for all nodes and skip `FinalizePosition` when external memory is used.
- Create `encode/decode` for node position, this is just as a refactor.
- Reuse code between update position and finalization.
* Cleanup GPU Hist tests.
- Remove GPU Hist gradient sampling test. The same properties are tested in the gradient
sampler test suite.
- Move basic histogram tests into the histogram test suite.
- Remove the header inclusion of the `updater_gpu_hist.cu` in tests.
- Support resource view in ellpack.
- Define the CUDA version of MMAP resource.
- Define the CUDA version of malloc resource.
- Refactor cuda runtime API wrappers, and add memory access related wrappers.
- gather windows macros into a single header.
This PR replaces the original RABIT implementation with a new one, which has already been partially merged into XGBoost. The new one features:
- Federated learning for both CPU and GPU.
- NCCL.
- More data types.
- A unified interface for all the underlying implementations.
- Improved timeout handling for both tracker and workers.
- Exhausted tests with metrics (fixed a couple of bugs along the way).
- A reusable tracker for Python and JVM packages.
- Use std::uint64_t instead of size_t to avoid implementation-defined type.
- Rename to bst_idx_t, to account for other types of indexing.
- Small cleanup to the base header.
* [coll] Pass context to various functions.
In the future, the `Context` object would be required for collective operations, this PR
passes the context object to some required functions to prepare for swapping out the
implementation.
- Use the `linalg::Matrix` for storing gradients.
- New API for the custom objective.
- Custom objective for multi-class/multi-target is now required to return the correct shape.
- Custom objective for Python can accept arrays with any strides. (row-major, column-major)
- A `DeviceOrd` struct is implemented to indicate the device. It will eventually replace the `gpu_id` parameter.
- The `predictor` parameter is removed.
- Fallback to `DMatrix` when `inplace_predict` is not available.
- The heuristic for choosing a predictor is only used during training.
- Pass context from booster to DMatrix.
- Use context instead of integer for `n_threads`.
- Check the consistency configuration for `max_bin`.
- Test for all combinations of initialization options.
- Fix prediction range.
- Support prediction cache in mt-hist.
- Support model slicing.
- Make the booster a Python iterable by defining `__iter__`.
- Cleanup removed/deprecated parameters.
- A new field in the output model `iteration_indptr` for pointing to the ranges of trees for each iteration.
- Pass obj info into tree updater as const pointer.
This way we don't have to initialize the learner model param before configuring gbm, hence
breaking up the dependency of configurations.
- Define a new tree struct embedded in the `RegTree`.
- Provide dispatching functions in `RegTree`.
- Fix some c++-17 warnings about the use of nodiscard (currently we disable the warning on
the CI).
- Use uint32_t instead of size_t for `bst_target_t` as it has a defined size and can be used
as part of dmlc parameter.
- Hide the `Segment` struct inside the categorical split matrix.