* - pairwise ranking objective implementation on gpu
- there are couple of more algorithms (ndcg and map) for which support will be added
as follow-up pr's
- with no label groups defined, get gradient is 90x faster on gpu (120m instance
mortgage dataset)
- it can perform by an order of magnitude faster with ~ 10 groups (and adequate cores
for the cpu implementation)
* Add JSON config to rank obj.
* Use CMake config file for representing version.
* Generate c and Python version file with CMake.
The generated file is written into source tree. But unless XGBoost upgrades
its version, there will be no actual modification. This retains compatibility
with Makefiles for R.
* Add XGBoost version the DMatrix binaries.
* Simplify prefetch detection in CMakeLists.txt
* Apply Configurable to objective functions.
* Apply Model to Learner and Regtree, gbm.
* Add Load/SaveConfig to objs.
* Refactor obj tests to use smart pointer.
* Dummy methods for Save/Load Model.
* Move get transpose into cc.
* Clean up headers in host device vector, remove thrust dependency.
* Move span and host device vector into public.
* Install c++ headers.
* Short notes for c and c++.
Co-Authored-By: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
* Restrict access to `cfg_` in gbm.
* Verify having correct updaters.
* Remove `grow_global_histmaker`
This updater is the same as `grow_histmaker`. The former is not in our
document so we just remove it.
* Initial support for cudf integration.
* Add two C APIs for consuming data and metainfo.
* Add CopyFrom for SimpleCSRSource as a generic function to consume the data.
* Add FromDeviceColumnar for consuming device data.
* Add new MetaInfo::SetInfo for consuming label, weight etc.
* Refactor configuration [Part II].
* General changes:
** Remove `Init` methods to avoid ambiguity.
** Remove `Configure(std::map<>)` to avoid redundant copying and prepare for
parameter validation. (`std::vector` is returned from `InitAllowUnknown`).
** Add name to tree updaters for easier debugging.
* Learner changes:
** Make `LearnerImpl` the only source of configuration.
All configurations are stored and carried out by `LearnerImpl::Configure()`.
** Remove booster in C API.
Originally kept for "compatibility reason", but did not state why. So here
we just remove it.
** Add a `metric_names_` field in `LearnerImpl`.
** Remove `LazyInit`. Configuration will always be lazy.
** Run `Configure` before every iteration.
* Predictor changes:
** Allocate both cpu and gpu predictor.
** Remove cpu_predictor from gpu_predictor.
`GBTree` is now used to dispatch the predictor.
** Remove some GPU Predictor tests.
* IO
No IO changes. The binary model format stability is tested by comparing
hashing value of save models between two commits