* - set the appropriate device before freeing device memory...
- pr #4532 added a global memory tracker/logger to keep track of number of (de)allocations
and peak memory usage on a per device basis.
- this pr adds the appropriate check to make sure that the (de)allocation counts and memory usages
makes sense for the device. since verbosity is typically increased on debug/non-retail builds.
* - pre-create cub allocators and reuse them
- create them once and not resize them dynamically. we need to ensure that these allocators
are created and destroyed exactly once so that the appropriate device id's are set
This is part 1 of refactoring configuration.
* Move tree heuristic configurations.
* Split up declarations and definitions for GBTree.
* Implement UseGPU in gbm.
* make the assignments of HostDeviceVector exception safe.
* storing a dummy GPUDistribution instance in HDV for CPU based code.
* change testxgboost binary location to build directory.
* Upgrade gtest for clang-tidy.
* Use CMake to install GTest instead of mv.
* Don't enforce clang-tidy to return 0 due to errors in thrust.
* Add a small test for tidy itself.
* Reformat.
- Improved GPU performance logging
- Only use one execute shards function
- Revert performance regression on multi-GPU
- Use threads to launch NCCL AllReduce
* Implement Transform class.
* Add tests for softmax.
* Use Transform in regression, softmax and hinge objectives, except for Cox.
* Mark old gpu objective functions deprecated.
* static_assert for softmax.
* Split up multi-gpu tests.
- previously, vec_ in DeviceShard wasn't updated on copy; as a result,
the shards continued to refer to the old HostDeviceVectorImpl object,
which resulted in a dangling pointer once that object was deallocated
* Replaced std::vector with HostDeviceVector in MetaInfo and SparsePage.
- added distributions to HostDeviceVector
- using HostDeviceVector for labels, weights and base margings in MetaInfo
- using HostDeviceVector for offset and data in SparsePage
- other necessary refactoring
* Added const version of HostDeviceVector API calls.
- const versions added to calls that can trigger data transfers, e.g. DevicePointer()
- updated the code that uses HostDeviceVector
- objective functions now accept const HostDeviceVector<bst_float>& for predictions
* Updated src/linear/updater_gpu_coordinate.cu.
* Added read-only state for HostDeviceVector sync.
- this means no copies are performed if both host and devices access
the HostDeviceVector read-only
* Fixed linter and test errors.
- updated the lz4 plugin
- added ConstDeviceSpan to HostDeviceVector
- using device % dh::NVisibleDevices() for the physical device number,
e.g. in calls to cudaSetDevice()
* Fixed explicit template instantiation errors for HostDeviceVector.
- replaced HostDeviceVector<unsigned int> with HostDeviceVector<int>
* Fixed HostDeviceVector tests that require multiple GPUs.
- added a mock set device handler; when set, it is called instead of cudaSetDevice()
* Add basic Span class based on ISO++20.
* Use Span<Entry const> instead of Inst in SparsePage.
* Add DeviceSpan in HostDeviceVector, use it in regression obj.
* Multi-GPU HostDeviceVector.
- HostDeviceVector instances can now span multiple devices, defined by GPUSet struct
- the interface of HostDeviceVector has been modified accordingly
- GPU objective functions are now multi-GPU
- GPU predicting from cache is now multi-GPU
- avoiding omp_set_num_threads() calls
- other minor changes
* Replaced std::vector-based interfaces with HostDeviceVector-based interfaces.
- replacement was performed in the learner, boosters, predictors,
updaters, and objective functions
- only interfaces used in training were replaced;
interfaces like PredictInstance() still use std::vector
- refactoring necessary for replacement of interfaces was also performed,
such as using HostDeviceVector in prediction cache
* HostDeviceVector-based interfaces for custom objective function example plugin.
* Added GPU objective function and no-copy interface.
- xgboost::HostDeviceVector<T> syncs automatically between host and device
- no-copy interfaces have been added
- default implementations just sync the data to host
and call the implementations with std::vector
- GPU objective function, predictor, histogram updater process data
directly on GPU